Name | bloodmoon JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | A library for analyzing data and simulations from the WFM coded mask instrument. |
upload_time | 2025-01-08 14:42:16 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.11 |
license | MIT License
Copyright (c) 2025 Giuseppe Dilillo
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE. |
keywords |
astrophysics
coded masks
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Bloodmoon
A Python library for analyzing data from the Wide Field Monitor (WFM) coded mask instrument. Bloodmoon provides tools for:
- Image reconstruction
- Source detection and parameter estimation
- Detector effects modeling (vignetting, PSF)
- Dual-camera source localization
> ⚠️ **Note**: Bloodmoon is under active development. APIs may change between versions.
## Installation
### PyPI
```bash
pip install bloodmoon
```
### From Source
Installing from source is necessary when doing development work. The exact process depends on your platform but will generally require:
- Git
- Python 3.11 or later
- pip
- venv or conda (for environment management)
#### Using venv
```bash
# Clone repository
git clone https://github.com/peppedilillo/bloodmoon.git
cd bloodmoon
# Create and activate virtual environment
python3 -m venv venv
source venv/bin/activate # On Windows: .\venv\Scripts\activate
# Install package in editable mode with development dependencies
pip install -e ".[dev]"
```
#### Using Conda
```bash
# Clone repository
git clone https://github.com/peppedilillo/bloodmoon.git
cd bloodmoon
# Create and activate conda environment
conda create -n "bloodmoon" python=3.11
conda activate bloodmoon
# Install package in editable mode with development dependencies
pip install -e ".[dev]"
```
## Quick Start
```python
import bloodmoon as bm
# Load camera configuration
wfm = bm.codedmask("wfm_mask.fits")
# Load simulation data
filepaths = bm.simulation_files("simdir/")
sdl1a = bm.simulation(filepaths["cam1a"]["reconstructed"])
sdl1b = bm.simulation(filepaths["cam1b"]["reconstructed"])
# Create detector images
detector, bins = bm.count(wfm, sdl1a.data)
# Reconstruct sky image
sky = bm.decode(wfm, detector)
# Run iterative source detection
for sources, residuals in bm.iros(wfm, sdl1a, sdl1b, max_iterations=10):
# Process detected sources...
pass
```
For more take a look at our [demo](demo/demo.ipynb).
## Development
### Running Tests
Assuming you installed from sources, and your source living into `bloodmon` directory.
```bash
cd bloodmoon
python -m unittest
```
## Contributing
Contributions are welcome! Before submitting a pull request:
1. Ensure all tests pass: `python -m unittest`
2. Format code with black: `black -l 120 .`
3. Sort imports with isort: `isort --profile=google .`
For bug reports and feature requests, please open an issue.
Raw data
{
"_id": null,
"home_page": null,
"name": "bloodmoon",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "astrophysics, coded masks",
"author": null,
"author_email": "Giuseppe Dilillo <peppedilillo@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/88/a6/9838adb4f0e15ce136e9753ff1ad31bd348db84a01f18451dad99d2eaae5/bloodmoon-0.1.0.tar.gz",
"platform": null,
"description": "# Bloodmoon\n\nA Python library for analyzing data from the Wide Field Monitor (WFM) coded mask instrument. Bloodmoon provides tools for:\n- Image reconstruction\n- Source detection and parameter estimation\n- Detector effects modeling (vignetting, PSF)\n- Dual-camera source localization\n\n> \u26a0\ufe0f **Note**: Bloodmoon is under active development. APIs may change between versions.\n\n\n## Installation\n\n### PyPI\n\n```bash\npip install bloodmoon\n```\n\n### From Source\n\nInstalling from source is necessary when doing development work. The exact process depends on your platform but will generally require:\n- Git\n- Python 3.11 or later\n- pip\n- venv or conda (for environment management)\n\n#### Using venv\n```bash\n# Clone repository\ngit clone https://github.com/peppedilillo/bloodmoon.git\ncd bloodmoon\n\n# Create and activate virtual environment\npython3 -m venv venv\nsource venv/bin/activate # On Windows: .\\venv\\Scripts\\activate\n\n# Install package in editable mode with development dependencies\npip install -e \".[dev]\"\n```\n\n#### Using Conda\n```bash\n# Clone repository\ngit clone https://github.com/peppedilillo/bloodmoon.git\ncd bloodmoon\n\n# Create and activate conda environment\nconda create -n \"bloodmoon\" python=3.11\nconda activate bloodmoon\n\n# Install package in editable mode with development dependencies\npip install -e \".[dev]\"\n```\n\n## Quick Start\n\n```python\nimport bloodmoon as bm\n\n# Load camera configuration\nwfm = bm.codedmask(\"wfm_mask.fits\")\n\n# Load simulation data\nfilepaths = bm.simulation_files(\"simdir/\")\nsdl1a = bm.simulation(filepaths[\"cam1a\"][\"reconstructed\"])\nsdl1b = bm.simulation(filepaths[\"cam1b\"][\"reconstructed\"])\n\n# Create detector images\ndetector, bins = bm.count(wfm, sdl1a.data)\n\n# Reconstruct sky image\nsky = bm.decode(wfm, detector)\n\n# Run iterative source detection\nfor sources, residuals in bm.iros(wfm, sdl1a, sdl1b, max_iterations=10):\n # Process detected sources...\n pass\n```\n\nFor more take a look at our [demo](demo/demo.ipynb).\n\n## Development\n\n### Running Tests\n\nAssuming you installed from sources, and your source living into `bloodmon` directory.\n\n```bash\ncd bloodmoon\npython -m unittest\n```\n\n## Contributing\n\nContributions are welcome! Before submitting a pull request:\n\n1. Ensure all tests pass: `python -m unittest`\n2. Format code with black: `black -l 120 .`\n3. Sort imports with isort: `isort --profile=google .`\n\nFor bug reports and feature requests, please open an issue.",
"bugtrack_url": null,
"license": "MIT License\n \n Copyright (c) 2025 Giuseppe Dilillo\n \n Permission is hereby granted, free of charge, to any person\n obtaining a copy of this software and associated documentation\n files (the \"Software\"), to deal in the Software without\n restriction, including without limitation the rights to use,\n copy, modify, merge, publish, distribute, sublicense, and/or sell\n copies of the Software, and to permit persons to whom the\n Software is furnished to do so, subject to the following\n conditions:\n \n The above copyright notice and this permission notice shall be\n included in all copies or substantial portions of the Software.\n \n THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\n EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES\n OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND\n NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT\n HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,\n WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR\n OTHER DEALINGS IN THE SOFTWARE.",
"summary": "A library for analyzing data and simulations from the WFM coded mask instrument.",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/peppedilillo/bloodmoon"
},
"split_keywords": [
"astrophysics",
" coded masks"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "a1de861ae24518ed91b43209c5a5dc7b7c584f44847b7fef0c0196bf92af6afb",
"md5": "a44dd105f62bdea986911de2b3982e9e",
"sha256": "d853b969b212f91f603edfe564d2e6f7836b80c019872f5756633946b18c120a"
},
"downloads": -1,
"filename": "bloodmoon-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a44dd105f62bdea986911de2b3982e9e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 6520906,
"upload_time": "2025-01-08T14:42:21",
"upload_time_iso_8601": "2025-01-08T14:42:21.691643Z",
"url": "https://files.pythonhosted.org/packages/a1/de/861ae24518ed91b43209c5a5dc7b7c584f44847b7fef0c0196bf92af6afb/bloodmoon-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "88a69838adb4f0e15ce136e9753ff1ad31bd348db84a01f18451dad99d2eaae5",
"md5": "b0fbedfb7b41ee47e983df7ddde7bf1d",
"sha256": "d92892aa36457d8d03b4ea6f11e11a14d30035b90b2f4db5517d6e222fdfbdbe"
},
"downloads": -1,
"filename": "bloodmoon-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "b0fbedfb7b41ee47e983df7ddde7bf1d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 10923640,
"upload_time": "2025-01-08T14:42:16",
"upload_time_iso_8601": "2025-01-08T14:42:16.504801Z",
"url": "https://files.pythonhosted.org/packages/88/a6/9838adb4f0e15ce136e9753ff1ad31bd348db84a01f18451dad99d2eaae5/bloodmoon-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-08 14:42:16",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "peppedilillo",
"github_project": "bloodmoon",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "bloodmoon"
}