# Spatially-Varying-Blur-Detection-python
python implementation of the paper "Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes" - cvpr 2017
## brief Algorithm overview
Uses discrete cosine transform coefficients at multiple scales and uses max pooling on the high frequency coefficients to get the sharp areas in an image.
## Quickstart
This library performs Spatially Varying Blur Detection which is can be used in many applications such as Depth of field estimation, Depth from Focus estimation, Blur Magnification, Deblurring etc.
## Installation
To install, run:
`pip install blur-detector`
## Usage:
```
import blur_detector
import cv2
if __name__ == '__main__':
img = cv2.imread('image_name', 0)
blur_map = blur_detector.detectBlur(img, downsampling_factor=4, num_scales=4, scale_start=2, num_iterations_RF_filter=3, show_progress=True)
cv2.imshow('ori_img', img)
cv2.imshow('blur_map', blur_map)
cv2.waitKey(0)
```
As easy as that!!
Raw data
{
"_id": null,
"home_page": "https://github.com/Utkarsh-Deshmukh/Spatially-Varying-Blur-Detection-python",
"name": "blur-detector",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "Spatially Varying Blur Detection",
"author": "utkarsh-deshmukh",
"author_email": "utkarsh.deshmukh@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/e2/62/f4e82ffd1c4ff37ae09ad91b2e6eaf9eb3c3ca63ba28d5e26fdd972d0ecf/blur-detector-0.0.6.tar.gz",
"platform": null,
"description": "# Spatially-Varying-Blur-Detection-python\r\npython implementation of the paper \"Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes\" - cvpr 2017\r\n\r\n## brief Algorithm overview\r\nUses discrete cosine transform coefficients at multiple scales and uses max pooling on the high frequency coefficients to get the sharp areas in an image.\r\n\r\n## Quickstart\r\nThis library performs Spatially Varying Blur Detection which is can be used in many applications such as Depth of field estimation, Depth from Focus estimation, Blur Magnification, Deblurring etc.\r\n\r\n## Installation\r\n\r\nTo install, run:\r\n`pip install blur-detector`\r\n\r\n## Usage:\t\r\n```\r\nimport blur_detector\r\nimport cv2\r\nif __name__ == '__main__':\r\n\timg = cv2.imread('image_name', 0)\r\n\tblur_map = blur_detector.detectBlur(img, downsampling_factor=4, num_scales=4, scale_start=2, num_iterations_RF_filter=3, show_progress=True)\r\n\r\n\tcv2.imshow('ori_img', img)\r\n\tcv2.imshow('blur_map', blur_map)\r\n\tcv2.waitKey(0)\r\n```\r\nAs easy as that!!\r\n\r\n \r\n",
"bugtrack_url": null,
"license": "BSD 2-Clause \"Simplified\" License",
"summary": "Uses discrete cosine transform coefficients at multiple scales and uses max pooling on the high frequency coefficients to get the sharp areas in an image.",
"version": "0.0.6",
"split_keywords": [
"spatially",
"varying",
"blur",
"detection"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e262f4e82ffd1c4ff37ae09ad91b2e6eaf9eb3c3ca63ba28d5e26fdd972d0ecf",
"md5": "5f7c4b664f7cf15528a4e895de9b5147",
"sha256": "d0e591e1ad690c8a99336f47fb6ae15719aed19195c81764314f3eef24f87f3a"
},
"downloads": -1,
"filename": "blur-detector-0.0.6.tar.gz",
"has_sig": false,
"md5_digest": "5f7c4b664f7cf15528a4e895de9b5147",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 5949,
"upload_time": "2023-01-27T21:26:24",
"upload_time_iso_8601": "2023-01-27T21:26:24.369233Z",
"url": "https://files.pythonhosted.org/packages/e2/62/f4e82ffd1c4ff37ae09ad91b2e6eaf9eb3c3ca63ba28d5e26fdd972d0ecf/blur-detector-0.0.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-27 21:26:24",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "Utkarsh-Deshmukh",
"github_project": "Spatially-Varying-Blur-Detection-python",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "blur-detector"
}