bm.integer-math


Namebm.integer-math JSON
Version 0.5.1 PyPI version JSON
download
home_pageNone
Summary### Boring Math Library - integer mathematics
upload_time2025-02-17 23:16:15
maintainerNone
docs_urlNone
authorNone
requires_python>=3.12
licenseNone
keywords math integer number-theory lcm gcd primes comb combinations combinatorics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Boring Math Library - Integer math package

Package of Python integer math libraries.

* [Number theory module](#number-theory)
* [Combinatorics module](#combinatorics)

* **Repositories**
  * [bm.integer-math][1] project on *PyPI*
  * [Source code][2] on *GitHub*
* **Detailed documentation**
  * [Detailed API documentation][3] on *GH-Pages*

This project is part of the
[Boring Math][4] **bm.** namespace project.

### Number Theory Module: 

* Number Theory
  * Function **gcd**(int, int) -> int
    * greatest common divisor of two integers
    * always returns a non-negative number greater than 0
  * Function **lcm**(int, int) -> int
    * least common multiple of two integers
    * always returns a non-negative number greater than 0
  * Function **coprime**(int, int) -> tuple(int, int)
    * make 2 integers coprime by dividing out gcd
    * preserves signs of original numbers
  * Function **iSqrt**(int) -> int
    * integer square root
    * same as math.isqrt
  * Function **isSqr**(int) -> bool
    * returns true if integer argument is a perfect square
  * Function **primes**(start: int, end: int) -> Iterator[int]
    * now using *Wilson's Theorem*
  * Function **legendre_symbol**(a: int, p: int) ->datastructures int
    * where `p > 2` is a prime number
  * Function **jacobi_symbol**(a: int, n: int) -> int
    * where `n > 0`

---

### Combinatorics Module: **bm.integer_math.combinatorics**

* Combinatorics 
  * Function **comb**(n: int, m: int) -> int
    * returns number of combinations of n items taken m at a time
    * pure integer implementation of math.comb

---

[1]: https://pypi.org/project/bm.integer-math/
[2]: https://github.com/grscheller/bm-integer-math/
[3]: https://grscheller.github.io/boring-math-docs/integer-math/
[4]: https://github.com/grscheller/boring-math-docs

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "bm.integer-math",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": "math, integer, number-theory, lcm, gcd, primes, comb, combinations, combinatorics",
    "author": null,
    "author_email": "\"Geoffrey R. Scheller\" <geoffrey@scheller.com>",
    "download_url": "https://files.pythonhosted.org/packages/bb/a6/ffc99a3d3aec3b71eb22331b07a494f9258df9b2db5cf49a4a9a631c42cc/bm_integer_math-0.5.1.tar.gz",
    "platform": null,
    "description": "# Boring Math Library - Integer math package\n\nPackage of Python integer math libraries.\n\n* [Number theory module](#number-theory)\n* [Combinatorics module](#combinatorics)\n\n* **Repositories**\n  * [bm.integer-math][1] project on *PyPI*\n  * [Source code][2] on *GitHub*\n* **Detailed documentation**\n  * [Detailed API documentation][3] on *GH-Pages*\n\nThis project is part of the\n[Boring Math][4] **bm.** namespace project.\n\n### Number Theory Module: \n\n* Number Theory\n  * Function **gcd**(int, int) -> int\n    * greatest common divisor of two integers\n    * always returns a non-negative number greater than 0\n  * Function **lcm**(int, int) -> int\n    * least common multiple of two integers\n    * always returns a non-negative number greater than 0\n  * Function **coprime**(int, int) -> tuple(int, int)\n    * make 2 integers coprime by dividing out gcd\n    * preserves signs of original numbers\n  * Function **iSqrt**(int) -> int\n    * integer square root\n    * same as math.isqrt\n  * Function **isSqr**(int) -> bool\n    * returns true if integer argument is a perfect square\n  * Function **primes**(start: int, end: int) -> Iterator[int]\n    * now using *Wilson's Theorem*\n  * Function **legendre_symbol**(a: int, p: int) ->datastructures int\n    * where `p > 2` is a prime number\n  * Function **jacobi_symbol**(a: int, n: int) -> int\n    * where `n > 0`\n\n---\n\n### Combinatorics Module: **bm.integer_math.combinatorics**\n\n* Combinatorics \n  * Function **comb**(n: int, m: int) -> int\n    * returns number of combinations of n items taken m at a time\n    * pure integer implementation of math.comb\n\n---\n\n[1]: https://pypi.org/project/bm.integer-math/\n[2]: https://github.com/grscheller/bm-integer-math/\n[3]: https://grscheller.github.io/boring-math-docs/integer-math/\n[4]: https://github.com/grscheller/boring-math-docs\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "### Boring Math Library - integer mathematics",
    "version": "0.5.1",
    "project_urls": {
        "Changelog": "https://github.com/grscheller/bm-integer-math/blob/main/CHANGELOG.md",
        "Documentation": "https://grscheller.github.io/boring-math-docs/integer-math",
        "Source": "https://github.com/grscheller/bm-integer-math"
    },
    "split_keywords": [
        "math",
        " integer",
        " number-theory",
        " lcm",
        " gcd",
        " primes",
        " comb",
        " combinations",
        " combinatorics"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b190b105826465821144e30659e60ea4743061a102e7b2ba3cf7a5f2f4ae27ed",
                "md5": "15e897fed0b5baf6287c61846ea9f831",
                "sha256": "a6e4c130be7ec3be7bf1d2cbcc7db71a515b88b309d784c3c3bf98bb11c8e556"
            },
            "downloads": -1,
            "filename": "bm_integer_math-0.5.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "15e897fed0b5baf6287c61846ea9f831",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 10861,
            "upload_time": "2025-02-17T23:16:12",
            "upload_time_iso_8601": "2025-02-17T23:16:12.998283Z",
            "url": "https://files.pythonhosted.org/packages/b1/90/b105826465821144e30659e60ea4743061a102e7b2ba3cf7a5f2f4ae27ed/bm_integer_math-0.5.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "bba6ffc99a3d3aec3b71eb22331b07a494f9258df9b2db5cf49a4a9a631c42cc",
                "md5": "c75c88ab964d1a938cfe3a62c3eac39f",
                "sha256": "00c067214b2780a8116e1b511b13276e62d1fceca58c1ed9061101cafde07dda"
            },
            "downloads": -1,
            "filename": "bm_integer_math-0.5.1.tar.gz",
            "has_sig": false,
            "md5_digest": "c75c88ab964d1a938cfe3a62c3eac39f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 12894,
            "upload_time": "2025-02-17T23:16:15",
            "upload_time_iso_8601": "2025-02-17T23:16:15.069890Z",
            "url": "https://files.pythonhosted.org/packages/bb/a6/ffc99a3d3aec3b71eb22331b07a494f9258df9b2db5cf49a4a9a631c42cc/bm_integer_math-0.5.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-17 23:16:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "grscheller",
    "github_project": "bm-integer-math",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "bm.integer-math"
}
        
Elapsed time: 0.46589s