bn-testing


Namebn-testing JSON
Version 0.12.2 PyPI version JSON
download
home_pagehttps://github.com/windisch/bn_testing
SummaryA test bench to benchmark learn algorithms for graphical models
upload_time2023-06-08 14:45:37
maintainer
docs_urlNone
authorTobias Windisch
requires_python>=3.8.0
licenseApache-2.0
keywords graphical models
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # BN testing


[![Test Package](https://github.com/windisch/bn_testing/actions/workflows/test_package.yml/badge.svg)](https://github.com/windisch/bn_testing/actions/workflows/test_package.yml)
[![Documentation Status](https://readthedocs.org/projects/bn_testing/badge/?version=latest)](https://bn_testing.readthedocs.io/en/latest/?badge=latest)
[![PyPI](https://img.shields.io/pypi/v/bn_testing)](https://pypi.org/project/bn_testing/)

A test framework to evaluate methods that learn Bayesian Networks from
high-dimensional observational data.


## Sampling

Set up the graphical model and sample  data
```python
from bn_testing.models import BayesianNetwork
from bn_testing.dags import ErdosReny
from bn_testing.conditionals import PolynomialConditional


model = BayesianNetwork(
   dag=ErdosReny(p=0.01, n_nodes=100),
   conditionals=PolynomialConditional(max_terms=5)
)

df = model.sample(10000, normalize=True)
```

The observations are stored in a `pandas.DataFrame` where the columns
are the nodes of the DAG and each row is an observation. The
underlying DAG of the graphical model can be accessed with `model.dag`

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/windisch/bn_testing",
    "name": "bn-testing",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8.0",
    "maintainer_email": "",
    "keywords": "graphical models",
    "author": "Tobias Windisch",
    "author_email": "tobias.windisch@posteo.de",
    "download_url": "https://files.pythonhosted.org/packages/8f/09/b540a7c48b061552232bd26af396efa8ec0b3ad1b929765f48196eb8b609/bn_testing-0.12.2.tar.gz",
    "platform": null,
    "description": "# BN testing\n\n\n[![Test Package](https://github.com/windisch/bn_testing/actions/workflows/test_package.yml/badge.svg)](https://github.com/windisch/bn_testing/actions/workflows/test_package.yml)\n[![Documentation Status](https://readthedocs.org/projects/bn_testing/badge/?version=latest)](https://bn_testing.readthedocs.io/en/latest/?badge=latest)\n[![PyPI](https://img.shields.io/pypi/v/bn_testing)](https://pypi.org/project/bn_testing/)\n\nA test framework to evaluate methods that learn Bayesian Networks from\nhigh-dimensional observational data.\n\n\n## Sampling\n\nSet up the graphical model and sample  data\n```python\nfrom bn_testing.models import BayesianNetwork\nfrom bn_testing.dags import ErdosReny\nfrom bn_testing.conditionals import PolynomialConditional\n\n\nmodel = BayesianNetwork(\n   dag=ErdosReny(p=0.01, n_nodes=100),\n   conditionals=PolynomialConditional(max_terms=5)\n)\n\ndf = model.sample(10000, normalize=True)\n```\n\nThe observations are stored in a `pandas.DataFrame` where the columns\nare the nodes of the DAG and each row is an observation. The\nunderlying DAG of the graphical model can be accessed with `model.dag`\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "A test bench to benchmark learn algorithms for graphical models",
    "version": "0.12.2",
    "project_urls": {
        "Homepage": "https://github.com/windisch/bn_testing"
    },
    "split_keywords": [
        "graphical",
        "models"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "13702c16156ceb6431814e54d59647a20d003b60c7e51f51fbccce8bfb11ce29",
                "md5": "71026e2b4b8bb70feb3772f07bee998c",
                "sha256": "e1b1bdc33f888cfd125918e498689e1039aef53443488c13bcc304d8d30304c0"
            },
            "downloads": -1,
            "filename": "bn_testing-0.12.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "71026e2b4b8bb70feb3772f07bee998c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8.0",
            "size": 14810,
            "upload_time": "2023-06-08T14:45:36",
            "upload_time_iso_8601": "2023-06-08T14:45:36.495297Z",
            "url": "https://files.pythonhosted.org/packages/13/70/2c16156ceb6431814e54d59647a20d003b60c7e51f51fbccce8bfb11ce29/bn_testing-0.12.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8f09b540a7c48b061552232bd26af396efa8ec0b3ad1b929765f48196eb8b609",
                "md5": "d93a05da8924594f00045591a1bcdcbe",
                "sha256": "cbeed23c5a93a11f4b35832ca30af2d61ee45004347c60a73f16d94ff99cd96f"
            },
            "downloads": -1,
            "filename": "bn_testing-0.12.2.tar.gz",
            "has_sig": false,
            "md5_digest": "d93a05da8924594f00045591a1bcdcbe",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8.0",
            "size": 13663,
            "upload_time": "2023-06-08T14:45:37",
            "upload_time_iso_8601": "2023-06-08T14:45:37.784619Z",
            "url": "https://files.pythonhosted.org/packages/8f/09/b540a7c48b061552232bd26af396efa8ec0b3ad1b929765f48196eb8b609/bn_testing-0.12.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-08 14:45:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "windisch",
    "github_project": "bn_testing",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "bn-testing"
}
        
Elapsed time: 2.19073s