Name | bodo JSON |
Version |
2025.1
JSON |
| download |
home_page | None |
Summary | High-Performance Python Compute Engine for Data and AI |
upload_time | 2025-01-13 22:40:18 |
maintainer | None |
docs_url | None |
author | Bodo.ai |
requires_python | <3.13,>=3.10 |
license | None |
keywords |
data
analytics
cluster
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<!--
NOTE: the example in this file is covered by tests in bodo/tests/test_quickstart_docs.py. Any changes to the examples in this file should also update the corresponding unit test.
-->
![Logo](Assets/bodo.png)
<h3 align="center">
<a href="https://docs.bodo.ai/latest/" target="_blank"><b>Docs</b></a>
·
<a href="https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email" target="_blank"><b>Slack</b></a>
·
<a href="https://www.bodo.ai/benchmarks/" target="_blank"><b>Benchmarks</b></a>
</h3>
# Bodo: High-Performance Python Compute Engine for Data and AI
Bodo is a cutting edge compute engine for large scale Python data processing. Powered by an innovative auto-parallelizing just-in-time compiler, Bodo transforms Python programs into highly optimized, parallel binaries without requiring code rewrites, which makes Bodo [20x to 240x faster](https://github.com/bodo-ai/Bodo/tree/main/benchmarks/nyc_taxi) compared to alternatives!
<img src="benchmarks/img/nyc-taxi-benchmark.png" alt="NYC Taxi Benchmark" width="500"/>
Unlike traditional distributed computing frameworks, Bodo:
- Seamlessly supports native Python APIs like Pandas and NumPy.
- Eliminates runtime overheads common in driver-executor models by leveraging Message Passing Interface (MPI) tech for true distributed execution.
## Goals
Bodo makes Python run much (much!) faster than it normally does!
1. **Exceptional Performance:**
Deliver HPC-grade performance and scalability for Python data workloads as if the code was written in C++/MPI, whether running on a laptop or across large cloud clusters.
2. **Easy to Use:**
Easily integrate into Python workflows with a simple decorator, and support native Pandas and NumPy APIs.
3. **Interoperable:**
Compatible with regular Python ecosystem, and can selectively speed up only the functions that are Bodo supported.
4. **Integration with Modern Data Infrastructure:**
Provide robust support for industry-leading data platforms like Apache Iceberg and Snowflake, enabling smooth interoperability with existing ecosystems.
## Non-goals
1. *Full Python Language Support:*
We are currently focused on a targeted subset of Python used for data-intensive and computationally heavy workloads, rather than supporting the entire Python syntax and all library APIs.
2. *Non-Data Workloads:*
Prioritize applications in data engineering, data science, and AI/ML. Bodo is not designed for general-purpose use cases that are non-data-centric.
3. *Real-time Compilation:*
While compilation time is improving, Bodo is not yet optimized for scenarios requiring very short compilation times (e.g., workloads with execution times of only a few seconds).
## Key Features
- Automatic optimization & parallelization of Python programs using Pandas and NumPy.
- Linear scalability from laptops to large-scale clusters and supercomputers.
- Advanced scalable I/O support for Iceberg, Snowflake, Parquet, CSV, and JSON with automatic filter pushdown and column pruning for optimized data access.
- High performance SQL Engine that is natively integrated into Python.
See Bodo documentation to learn more: https://docs.bodo.ai/
## Installation
Note: Bodo requires Python 3.10, 3.11, or 3.12.
Bodo can be installed using Pip or Conda:
```bash
pip install -U bodo
```
or
```bash
conda create -n Bodo python=3.12 -c conda-forge
conda activate Bodo
conda install bodo -c bodo.ai -c conda-forge
```
Bodo works with Linux x86 and both Mac x86 and Mac ARM right now. We will have Windows support (and more) coming soon!
## Example Code
Here is an example Pandas code that reads and processes a sample Parquet dataset with Bodo.
```python
import pandas as pd
import numpy as np
import bodo
import time
# Generate sample data
NUM_GROUPS = 30
NUM_ROWS = 20_000_000
df = pd.DataFrame({
"A": np.arange(NUM_ROWS) % NUM_GROUPS,
"B": np.arange(NUM_ROWS)
})
df.to_parquet("my_data.pq")
@bodo.jit(cache=True)
def computation():
t1 = time.time()
df = pd.read_parquet("my_data.pq")
df2 = pd.DataFrame({"A": df.apply(lambda r: 0 if r.A == 0 else (r.B // r.A), axis=1)})
df2.to_parquet("out.pq")
print("Execution time:", time.time() - t1)
computation()
```
## How to Contribute
Please read our latest [project contribution guide](CONTRIBUTING.md).
## Getting involved
You can join our community and collaborate with other contributors by joining our [Slack channel](https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email) – we’re excited to hear your ideas and help you get started!
[![codecov](https://codecov.io/github/bodo-ai/Bodo/graph/badge.svg?token=zYHQy0R9ck)](https://codecov.io/github/bodo-ai/Bodo)
Raw data
{
"_id": null,
"home_page": null,
"name": "bodo",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.13,>=3.10",
"maintainer_email": null,
"keywords": "data, analytics, cluster",
"author": "Bodo.ai",
"author_email": null,
"download_url": null,
"platform": null,
"description": "<!--\nNOTE: the example in this file is covered by tests in bodo/tests/test_quickstart_docs.py. Any changes to the examples in this file should also update the corresponding unit test.\n -->\n\n![Logo](Assets/bodo.png)\n\n<h3 align=\"center\">\n <a href=\"https://docs.bodo.ai/latest/\" target=\"_blank\"><b>Docs</b></a>\n · \n <a href=\"https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email\" target=\"_blank\"><b>Slack</b></a>\n · \n <a href=\"https://www.bodo.ai/benchmarks/\" target=\"_blank\"><b>Benchmarks</b></a>\n</h3>\n\n# Bodo: High-Performance Python Compute Engine for Data and AI\n\nBodo is a cutting edge compute engine for large scale Python data processing. Powered by an innovative auto-parallelizing just-in-time compiler, Bodo transforms Python programs into highly optimized, parallel binaries without requiring code rewrites, which makes Bodo [20x to 240x faster](https://github.com/bodo-ai/Bodo/tree/main/benchmarks/nyc_taxi) compared to alternatives!\n\n<img src=\"benchmarks/img/nyc-taxi-benchmark.png\" alt=\"NYC Taxi Benchmark\" width=\"500\"/>\n\nUnlike traditional distributed computing frameworks, Bodo:\n- Seamlessly supports native Python APIs like Pandas and NumPy.\n- Eliminates runtime overheads common in driver-executor models by leveraging Message Passing Interface (MPI) tech for true distributed execution.\n\n## Goals\n\nBodo makes Python run much (much!) faster than it normally does!\n\n1. **Exceptional Performance:**\nDeliver HPC-grade performance and scalability for Python data workloads as if the code was written in C++/MPI, whether running on a laptop or across large cloud clusters.\n\n2. **Easy to Use:**\nEasily integrate into Python workflows with a simple decorator, and support native Pandas and NumPy APIs.\n\n3. **Interoperable:**\nCompatible with regular Python ecosystem, and can selectively speed up only the functions that are Bodo supported.\n\n4. **Integration with Modern Data Infrastructure:**\nProvide robust support for industry-leading data platforms like Apache Iceberg and Snowflake, enabling smooth interoperability with existing ecosystems.\n\n\n## Non-goals\n\n1. *Full Python Language Support:*\nWe are currently focused on a targeted subset of Python used for data-intensive and computationally heavy workloads, rather than supporting the entire Python syntax and all library APIs.\n\n2. *Non-Data Workloads:*\nPrioritize applications in data engineering, data science, and AI/ML. Bodo is not designed for general-purpose use cases that are non-data-centric.\n\n3. *Real-time Compilation:*\nWhile compilation time is improving, Bodo is not yet optimized for scenarios requiring very short compilation times (e.g., workloads with execution times of only a few seconds).\n\n\n## Key Features\n\n- Automatic optimization & parallelization of Python programs using Pandas and NumPy.\n- Linear scalability from laptops to large-scale clusters and supercomputers.\n- Advanced scalable I/O support for Iceberg, Snowflake, Parquet, CSV, and JSON with automatic filter pushdown and column pruning for optimized data access.\n- High performance SQL Engine that is natively integrated into Python.\n\nSee Bodo documentation to learn more: https://docs.bodo.ai/\n\n\n## Installation\n\nNote: Bodo requires Python 3.10, 3.11, or 3.12.\n\nBodo can be installed using Pip or Conda:\n\n```bash\npip install -U bodo\n```\n\nor\n\n```bash\nconda create -n Bodo python=3.12 -c conda-forge\nconda activate Bodo\nconda install bodo -c bodo.ai -c conda-forge\n```\n\nBodo works with Linux x86 and both Mac x86 and Mac ARM right now. We will have Windows support (and more) coming soon!\n\n## Example Code\n\nHere is an example Pandas code that reads and processes a sample Parquet dataset with Bodo.\n\n\n```python\nimport pandas as pd\nimport numpy as np\nimport bodo\nimport time\n\n# Generate sample data\nNUM_GROUPS = 30\nNUM_ROWS = 20_000_000\n\ndf = pd.DataFrame({\n \"A\": np.arange(NUM_ROWS) % NUM_GROUPS,\n \"B\": np.arange(NUM_ROWS)\n})\ndf.to_parquet(\"my_data.pq\")\n\n@bodo.jit(cache=True)\ndef computation():\n t1 = time.time()\n df = pd.read_parquet(\"my_data.pq\")\n df2 = pd.DataFrame({\"A\": df.apply(lambda r: 0 if r.A == 0 else (r.B // r.A), axis=1)})\n df2.to_parquet(\"out.pq\")\n print(\"Execution time:\", time.time() - t1)\n\ncomputation()\n```\n\n## How to Contribute\n\nPlease read our latest [project contribution guide](CONTRIBUTING.md).\n\n## Getting involved\n\nYou can join our community and collaborate with other contributors by joining our [Slack channel](https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email) \u2013 we\u2019re excited to hear your ideas and help you get started!\n\n[![codecov](https://codecov.io/github/bodo-ai/Bodo/graph/badge.svg?token=zYHQy0R9ck)](https://codecov.io/github/bodo-ai/Bodo)",
"bugtrack_url": null,
"license": null,
"summary": "High-Performance Python Compute Engine for Data and AI",
"version": "2025.1",
"project_urls": {
"Documentation": "https://docs.bodo.ai",
"Homepage": "https://bodo.ai",
"Repository": "https://github.com/bodo-ai/Bodo"
},
"split_keywords": [
"data",
" analytics",
" cluster"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8e113ad634bd328e31235c8fb6ca13724c60cfe234c54511d09eb3fd1633aa7a",
"md5": "a5f33551a508380ec406427c1769700c",
"sha256": "ab77bb5af5dd1239d5878ffd3f58dd0e882d0ba96225797c99fc4585d4635b64"
},
"downloads": -1,
"filename": "bodo-2025.1-cp310-cp310-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "a5f33551a508380ec406427c1769700c",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<3.13,>=3.10",
"size": 45643867,
"upload_time": "2025-01-13T22:40:18",
"upload_time_iso_8601": "2025-01-13T22:40:18.580839Z",
"url": "https://files.pythonhosted.org/packages/8e/11/3ad634bd328e31235c8fb6ca13724c60cfe234c54511d09eb3fd1633aa7a/bodo-2025.1-cp310-cp310-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d993f24ec878c8bd4376b6f48a4839050d876cef3f77ba0861b50b0b907e81f7",
"md5": "2f90f9fc44e83b5d4e767e7ef60ce881",
"sha256": "e32e219793426fbb1a91d8ec599979772a5d744a831759b579c5ce7e9879ddb6"
},
"downloads": -1,
"filename": "bodo-2025.1-cp310-cp310-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "2f90f9fc44e83b5d4e767e7ef60ce881",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<3.13,>=3.10",
"size": 31919420,
"upload_time": "2025-01-13T22:39:48",
"upload_time_iso_8601": "2025-01-13T22:39:48.966482Z",
"url": "https://files.pythonhosted.org/packages/d9/93/f24ec878c8bd4376b6f48a4839050d876cef3f77ba0861b50b0b907e81f7/bodo-2025.1-cp310-cp310-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a36698d40c66eb8a1078402995651694e23f0accb51da98b7ac289dd06bbfbc3",
"md5": "6409f7af7b1f18a0bffd251ab00cd3b0",
"sha256": "21a30bc2684b08fece97bd10671ee7ca220abd550201496208ff0fa2acc0d314"
},
"downloads": -1,
"filename": "bodo-2025.1-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "6409f7af7b1f18a0bffd251ab00cd3b0",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<3.13,>=3.10",
"size": 47194084,
"upload_time": "2025-01-13T22:38:54",
"upload_time_iso_8601": "2025-01-13T22:38:54.291246Z",
"url": "https://files.pythonhosted.org/packages/a3/66/98d40c66eb8a1078402995651694e23f0accb51da98b7ac289dd06bbfbc3/bodo-2025.1-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e78c76d6e17966514e3f0dbb37c5765bf762a3e3f1712fc250df484f9471a308",
"md5": "b068d9c898bc92fdb509baeaca1f42d4",
"sha256": "1d1c30a79c969bcde9eaabe146e5de7e06a80ade443442fbaf88317d4d75c947"
},
"downloads": -1,
"filename": "bodo-2025.1-cp311-cp311-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "b068d9c898bc92fdb509baeaca1f42d4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<3.13,>=3.10",
"size": 45635430,
"upload_time": "2025-01-13T22:40:26",
"upload_time_iso_8601": "2025-01-13T22:40:26.732568Z",
"url": "https://files.pythonhosted.org/packages/e7/8c/76d6e17966514e3f0dbb37c5765bf762a3e3f1712fc250df484f9471a308/bodo-2025.1-cp311-cp311-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c58c570da5458c4d5c2b2a1f77805143f524c937dd030f969cc3fade41c10160",
"md5": "ed3f5bb40ef7b7b339d3ed1cd73a759c",
"sha256": "1a16b9cabba62ecef97febe230854e3efdcfe1449a5a96979d882c2e7c441c44"
},
"downloads": -1,
"filename": "bodo-2025.1-cp311-cp311-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "ed3f5bb40ef7b7b339d3ed1cd73a759c",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<3.13,>=3.10",
"size": 31915638,
"upload_time": "2025-01-13T22:39:55",
"upload_time_iso_8601": "2025-01-13T22:39:55.450295Z",
"url": "https://files.pythonhosted.org/packages/c5/8c/570da5458c4d5c2b2a1f77805143f524c937dd030f969cc3fade41c10160/bodo-2025.1-cp311-cp311-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "896006566da23235d0f4efb768ebbf8a925bdaadb4bc830b5fcc87a3dbc08a4a",
"md5": "bb47e933142324f9de52689dc7272ca6",
"sha256": "0b5554b5d363d8aefde1195d313424ac82bc007fad4dd3c24ef52cfb931577a5"
},
"downloads": -1,
"filename": "bodo-2025.1-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "bb47e933142324f9de52689dc7272ca6",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<3.13,>=3.10",
"size": 47376700,
"upload_time": "2025-01-13T22:39:02",
"upload_time_iso_8601": "2025-01-13T22:39:02.842202Z",
"url": "https://files.pythonhosted.org/packages/89/60/06566da23235d0f4efb768ebbf8a925bdaadb4bc830b5fcc87a3dbc08a4a/bodo-2025.1-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b5a551264c07b6fe72437885001669f574ab123bed597c0cca4f1bfa9a8e9040",
"md5": "dd275774339580d92927e97bd4b522d3",
"sha256": "40daaf93cb924c0fb98e888ff2d646d71d3c18cf8798474855281292f408d047"
},
"downloads": -1,
"filename": "bodo-2025.1-cp312-cp312-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "dd275774339580d92927e97bd4b522d3",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<3.13,>=3.10",
"size": 45666479,
"upload_time": "2025-01-13T22:40:36",
"upload_time_iso_8601": "2025-01-13T22:40:36.014214Z",
"url": "https://files.pythonhosted.org/packages/b5/a5/51264c07b6fe72437885001669f574ab123bed597c0cca4f1bfa9a8e9040/bodo-2025.1-cp312-cp312-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3472901691321f61d5ee9a62dc83aef7ce4b178574830d3fafedaf7626303a7a",
"md5": "c1234f9da06f5fe8db63443babe938d9",
"sha256": "68fc9c676f2f40203bd79105c63caf4bb6791b361bd1a96bbca5d8d6725bdb39"
},
"downloads": -1,
"filename": "bodo-2025.1-cp312-cp312-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "c1234f9da06f5fe8db63443babe938d9",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<3.13,>=3.10",
"size": 31940603,
"upload_time": "2025-01-13T22:40:00",
"upload_time_iso_8601": "2025-01-13T22:40:00.844791Z",
"url": "https://files.pythonhosted.org/packages/34/72/901691321f61d5ee9a62dc83aef7ce4b178574830d3fafedaf7626303a7a/bodo-2025.1-cp312-cp312-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8c39111ef51cc308d157ee07a926d8cd2cc6ca4dfa7d1c1f15f6fe2802567fdc",
"md5": "c700d6d37c066564c339bb62f2f168bb",
"sha256": "f38b671299db17e2965381e885e631803f4ec7b3570ddd98f94cdb78f1570a71"
},
"downloads": -1,
"filename": "bodo-2025.1-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "c700d6d37c066564c339bb62f2f168bb",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<3.13,>=3.10",
"size": 47338368,
"upload_time": "2025-01-13T22:39:10",
"upload_time_iso_8601": "2025-01-13T22:39:10.255610Z",
"url": "https://files.pythonhosted.org/packages/8c/39/111ef51cc308d157ee07a926d8cd2cc6ca4dfa7d1c1f15f6fe2802567fdc/bodo-2025.1-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-13 22:40:18",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "bodo-ai",
"github_project": "Bodo",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "bodo"
}