Name | bodo JSON |
Version |
2025.7.4
JSON |
| download |
home_page | None |
Summary | High-Performance Python Compute Engine for Data and AI |
upload_time | 2025-07-08 17:27:30 |
maintainer | None |
docs_url | None |
author | Bodo.ai |
requires_python | >=3.9 |
license | None |
keywords |
data
analytics
cluster
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<!--
NOTE: the example in this file is covered by tests in bodo/tests/test_quickstart_docs.py. Any changes to the examples in this file should also update the corresponding unit test.
-->

<h3 align="center">
<a href="https://docs.bodo.ai/latest/" target="_blank"><b>Docs</b></a>
·
<a href="https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email" target="_blank"><b>Slack</b></a>
·
<a href="https://www.bodo.ai/benchmarks/" target="_blank"><b>Benchmarks</b></a>
</h3>
# Bodo: High-Performance Python Compute Engine for Data and AI
Bodo is a cutting edge compute engine for large scale Python data processing. Powered by an innovative auto-parallelizing just-in-time compiler, Bodo transforms Python programs into highly optimized, parallel binaries without requiring code rewrites, which makes Bodo [20x to 240x faster](https://github.com/bodo-ai/Bodo/tree/main/benchmarks/nyc_taxi) compared to alternatives!
<img src="benchmarks/img/nyc-taxi-benchmark.png" alt="NYC Taxi Benchmark" width="500"/>
Unlike traditional distributed computing frameworks, Bodo:
- Seamlessly supports native Python APIs like Pandas and NumPy.
- Eliminates runtime overheads common in driver-executor models by leveraging Message Passing Interface (MPI) tech for true distributed execution.
## Goals
Bodo makes Python run much (much!) faster than it normally does!
1. **Exceptional Performance:**
Deliver HPC-grade performance and scalability for Python data workloads as if the code was written in C++/MPI, whether running on a laptop or across large cloud clusters.
2. **Easy to Use:**
Easily integrate into Python workflows with a simple decorator, and support native Pandas and NumPy APIs.
3. **Interoperable:**
Compatible with regular Python ecosystem, and can selectively speed up only the functions that are Bodo supported.
4. **Integration with Modern Data Infrastructure:**
Provide robust support for industry-leading data platforms like Apache Iceberg and Snowflake, enabling smooth interoperability with existing ecosystems.
## Non-goals
1. *Full Python Language Support:*
We are currently focused on a targeted subset of Python used for data-intensive and computationally heavy workloads, rather than supporting the entire Python syntax and all library APIs.
2. *Non-Data Workloads:*
Prioritize applications in data engineering, data science, and AI/ML. Bodo is not designed for general-purpose use cases that are non-data-centric.
3. *Real-time Compilation:*
While compilation time is improving, Bodo is not yet optimized for scenarios requiring very short compilation times (e.g., workloads with execution times of only a few seconds).
## Key Features
- Automatic optimization & parallelization of Python programs using Pandas and NumPy.
- Linear scalability from laptops to large-scale clusters and supercomputers.
- Advanced scalable I/O support for Iceberg, Snowflake, Parquet, CSV, and JSON with automatic filter pushdown and column pruning for optimized data access.
- High performance SQL Engine that is natively integrated into Python.
See Bodo documentation to learn more: https://docs.bodo.ai/
## Installation
Note: Bodo requires Python 3.9+.
Bodo can be installed using Pip or Conda:
```bash
pip install -U bodo
```
or
```bash
conda create -n Bodo python=3.13 -c conda-forge
conda activate Bodo
conda install bodo -c conda-forge
```
Bodo works with Linux x86, both Mac x86 and Mac ARM, and Windows right now. We will have Linux ARM support (and more) coming soon!
## Example Code
Here is an example Pandas code that reads and processes a sample Parquet dataset with Bodo.
```python
import pandas as pd
import numpy as np
import bodo
import time
# Generate sample data
NUM_GROUPS = 30
NUM_ROWS = 20_000_000
df = pd.DataFrame({
"A": np.arange(NUM_ROWS) % NUM_GROUPS,
"B": np.arange(NUM_ROWS)
})
df.to_parquet("my_data.pq")
@bodo.jit(cache=True)
def computation():
t1 = time.time()
df = pd.read_parquet("my_data.pq")
df2 = pd.DataFrame({"A": df.apply(lambda r: 0 if r.A == 0 else (r.B // r.A), axis=1)})
df2.to_parquet("out.pq")
print("Execution time:", time.time() - t1)
computation()
```
## How to Contribute
Please read our latest [project contribution guide](CONTRIBUTING.md).
## Getting involved
You can join our community and collaborate with other contributors by joining our [Slack channel](https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email) – we’re excited to hear your ideas and help you get started!
[](https://codecov.io/github/bodo-ai/Bodo)
Raw data
{
"_id": null,
"home_page": null,
"name": "bodo",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "data, analytics, cluster",
"author": "Bodo.ai",
"author_email": null,
"download_url": null,
"platform": null,
"description": "<!--\nNOTE: the example in this file is covered by tests in bodo/tests/test_quickstart_docs.py. Any changes to the examples in this file should also update the corresponding unit test.\n -->\n\n\n\n<h3 align=\"center\">\n <a href=\"https://docs.bodo.ai/latest/\" target=\"_blank\"><b>Docs</b></a>\n · \n <a href=\"https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email\" target=\"_blank\"><b>Slack</b></a>\n · \n <a href=\"https://www.bodo.ai/benchmarks/\" target=\"_blank\"><b>Benchmarks</b></a>\n</h3>\n\n# Bodo: High-Performance Python Compute Engine for Data and AI\n\nBodo is a cutting edge compute engine for large scale Python data processing. Powered by an innovative auto-parallelizing just-in-time compiler, Bodo transforms Python programs into highly optimized, parallel binaries without requiring code rewrites, which makes Bodo [20x to 240x faster](https://github.com/bodo-ai/Bodo/tree/main/benchmarks/nyc_taxi) compared to alternatives!\n\n<img src=\"benchmarks/img/nyc-taxi-benchmark.png\" alt=\"NYC Taxi Benchmark\" width=\"500\"/>\n\nUnlike traditional distributed computing frameworks, Bodo:\n- Seamlessly supports native Python APIs like Pandas and NumPy.\n- Eliminates runtime overheads common in driver-executor models by leveraging Message Passing Interface (MPI) tech for true distributed execution.\n\n## Goals\n\nBodo makes Python run much (much!) faster than it normally does!\n\n1. **Exceptional Performance:**\nDeliver HPC-grade performance and scalability for Python data workloads as if the code was written in C++/MPI, whether running on a laptop or across large cloud clusters.\n\n2. **Easy to Use:**\nEasily integrate into Python workflows with a simple decorator, and support native Pandas and NumPy APIs.\n\n3. **Interoperable:**\nCompatible with regular Python ecosystem, and can selectively speed up only the functions that are Bodo supported.\n\n4. **Integration with Modern Data Infrastructure:**\nProvide robust support for industry-leading data platforms like Apache Iceberg and Snowflake, enabling smooth interoperability with existing ecosystems.\n\n\n## Non-goals\n\n1. *Full Python Language Support:*\nWe are currently focused on a targeted subset of Python used for data-intensive and computationally heavy workloads, rather than supporting the entire Python syntax and all library APIs.\n\n2. *Non-Data Workloads:*\nPrioritize applications in data engineering, data science, and AI/ML. Bodo is not designed for general-purpose use cases that are non-data-centric.\n\n3. *Real-time Compilation:*\nWhile compilation time is improving, Bodo is not yet optimized for scenarios requiring very short compilation times (e.g., workloads with execution times of only a few seconds).\n\n\n## Key Features\n\n- Automatic optimization & parallelization of Python programs using Pandas and NumPy.\n- Linear scalability from laptops to large-scale clusters and supercomputers.\n- Advanced scalable I/O support for Iceberg, Snowflake, Parquet, CSV, and JSON with automatic filter pushdown and column pruning for optimized data access.\n- High performance SQL Engine that is natively integrated into Python.\n\nSee Bodo documentation to learn more: https://docs.bodo.ai/\n\n\n## Installation\n\nNote: Bodo requires Python 3.9+.\n\nBodo can be installed using Pip or Conda:\n\n```bash\npip install -U bodo\n```\n\nor\n\n```bash\nconda create -n Bodo python=3.13 -c conda-forge\nconda activate Bodo\nconda install bodo -c conda-forge\n```\n\nBodo works with Linux x86, both Mac x86 and Mac ARM, and Windows right now. We will have Linux ARM support (and more) coming soon!\n\n## Example Code\n\nHere is an example Pandas code that reads and processes a sample Parquet dataset with Bodo.\n\n\n```python\nimport pandas as pd\nimport numpy as np\nimport bodo\nimport time\n\n# Generate sample data\nNUM_GROUPS = 30\nNUM_ROWS = 20_000_000\n\ndf = pd.DataFrame({\n \"A\": np.arange(NUM_ROWS) % NUM_GROUPS,\n \"B\": np.arange(NUM_ROWS)\n})\ndf.to_parquet(\"my_data.pq\")\n\n@bodo.jit(cache=True)\ndef computation():\n t1 = time.time()\n df = pd.read_parquet(\"my_data.pq\")\n df2 = pd.DataFrame({\"A\": df.apply(lambda r: 0 if r.A == 0 else (r.B // r.A), axis=1)})\n df2.to_parquet(\"out.pq\")\n print(\"Execution time:\", time.time() - t1)\n\ncomputation()\n```\n\n## How to Contribute\n\nPlease read our latest [project contribution guide](CONTRIBUTING.md).\n\n## Getting involved\n\nYou can join our community and collaborate with other contributors by joining our [Slack channel](https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email) \u2013 we\u2019re excited to hear your ideas and help you get started!\n\n[](https://codecov.io/github/bodo-ai/Bodo)",
"bugtrack_url": null,
"license": null,
"summary": "High-Performance Python Compute Engine for Data and AI",
"version": "2025.7.4",
"project_urls": {
"Documentation": "https://docs.bodo.ai",
"Homepage": "https://bodo.ai",
"Repository": "https://github.com/bodo-ai/Bodo"
},
"split_keywords": [
"data",
" analytics",
" cluster"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "42e2984a1fd3e1be67e903b59c44a4ad7aa754593877b64fff00f1674896cb7b",
"md5": "2fd6aef2d8a665ec17108a32dbe8abf2",
"sha256": "86aadaa0fbd091d88c0c7b3ca8b939a4aaf0f37c629516bbe39229e1d9e671b0"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp310-cp310-macosx_11_0_x86_64.whl",
"has_sig": false,
"md5_digest": "2fd6aef2d8a665ec17108a32dbe8abf2",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 29374854,
"upload_time": "2025-07-08T17:27:30",
"upload_time_iso_8601": "2025-07-08T17:27:30.226447Z",
"url": "https://files.pythonhosted.org/packages/42/e2/984a1fd3e1be67e903b59c44a4ad7aa754593877b64fff00f1674896cb7b/bodo-2025.7.4-cp310-cp310-macosx_11_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f7eaecb3eb53e6732aec48c8d4faf874f94100236032295e099d8c48ada01e8b",
"md5": "affb6a9c5f3dc4f76ff523a741f9d654",
"sha256": "436d99d74df3ad1156c2e457eb862c0ba3aa57d7294000cc04d83a465b70e798"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp310-cp310-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "affb6a9c5f3dc4f76ff523a741f9d654",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 24412345,
"upload_time": "2025-07-08T17:27:34",
"upload_time_iso_8601": "2025-07-08T17:27:34.391210Z",
"url": "https://files.pythonhosted.org/packages/f7/ea/ecb3eb53e6732aec48c8d4faf874f94100236032295e099d8c48ada01e8b/bodo-2025.7.4-cp310-cp310-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6b862c165eb2dafb4ac980b479de3bfaa30b0089211daba865c189692a4b6f6a",
"md5": "71c50925b17948f0424aa285cbce3d13",
"sha256": "53b5ac9ad52dfed51da614e07f05f1893f443dbb8760359c94dd62bfcad370b3"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "71c50925b17948f0424aa285cbce3d13",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 37611747,
"upload_time": "2025-07-08T17:27:37",
"upload_time_iso_8601": "2025-07-08T17:27:37.769028Z",
"url": "https://files.pythonhosted.org/packages/6b/86/2c165eb2dafb4ac980b479de3bfaa30b0089211daba865c189692a4b6f6a/bodo-2025.7.4-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1f456973c12c306c4ac4b2f0dff1bc704cfed7fbf2ea23ae83c6d00b9d1cc1d7",
"md5": "2cd6597bcab7ec42a3af5066bdc4d861",
"sha256": "0e6d4b2e8e5bd0c3e26654ef1c5b08babb75f30fe8aec2c6b2c5ec83ef84b73c"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "2cd6597bcab7ec42a3af5066bdc4d861",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 17768837,
"upload_time": "2025-07-08T17:27:41",
"upload_time_iso_8601": "2025-07-08T17:27:41.019475Z",
"url": "https://files.pythonhosted.org/packages/1f/45/6973c12c306c4ac4b2f0dff1bc704cfed7fbf2ea23ae83c6d00b9d1cc1d7/bodo-2025.7.4-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0c7a5ab7eb25b60679f4bdc46dd6f059694bf25d117e3bbc8c5620d2e8d344bb",
"md5": "801606c5a3ed77492b0a8299f70776de",
"sha256": "3ea8a7c900f3ba50302b7c8af4ddad05b08f3ee86fb268aa0c203ea463200cfb"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp311-cp311-macosx_11_0_x86_64.whl",
"has_sig": false,
"md5_digest": "801606c5a3ed77492b0a8299f70776de",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 29380940,
"upload_time": "2025-07-08T17:27:44",
"upload_time_iso_8601": "2025-07-08T17:27:44.131486Z",
"url": "https://files.pythonhosted.org/packages/0c/7a/5ab7eb25b60679f4bdc46dd6f059694bf25d117e3bbc8c5620d2e8d344bb/bodo-2025.7.4-cp311-cp311-macosx_11_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "562e06f6a797041ef194dc065daca3568ee0bf607359456b2a8734d0a170525a",
"md5": "adfd8e5d5b51b1cced0a36c101a8b3a5",
"sha256": "fece428eac27bd27f3a471480bd71197b385277ac28a553387be4850bfa51022"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp311-cp311-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "adfd8e5d5b51b1cced0a36c101a8b3a5",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 24418095,
"upload_time": "2025-07-08T17:27:47",
"upload_time_iso_8601": "2025-07-08T17:27:47.235259Z",
"url": "https://files.pythonhosted.org/packages/56/2e/06f6a797041ef194dc065daca3568ee0bf607359456b2a8734d0a170525a/bodo-2025.7.4-cp311-cp311-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3c6a527c8569d92ddfa871f10fb78a573b95214aeb0b5327ac37447d54112c34",
"md5": "e4ea8c10fdf597863a0765daae6970f4",
"sha256": "a7fb5083492c20d20eddd7c4b6424204524820fd7b2329953b35acae915a8a74"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "e4ea8c10fdf597863a0765daae6970f4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 37835503,
"upload_time": "2025-07-08T17:27:50",
"upload_time_iso_8601": "2025-07-08T17:27:50.243082Z",
"url": "https://files.pythonhosted.org/packages/3c/6a/527c8569d92ddfa871f10fb78a573b95214aeb0b5327ac37447d54112c34/bodo-2025.7.4-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "924f9b203ed7804d3694f45c6c1d06354d74263e2954c8962a5c9a13f0d56e07",
"md5": "3084e1e05d2a63f7a29d07ff00d5c3e4",
"sha256": "e3e8a8b62a04c656a03e1c6010d474ec52ca12f6bf7f2cae9e0111b2849baba2"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "3084e1e05d2a63f7a29d07ff00d5c3e4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 17781903,
"upload_time": "2025-07-08T17:27:53",
"upload_time_iso_8601": "2025-07-08T17:27:53.474678Z",
"url": "https://files.pythonhosted.org/packages/92/4f/9b203ed7804d3694f45c6c1d06354d74263e2954c8962a5c9a13f0d56e07/bodo-2025.7.4-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "af475245d5dab79250a11d51eb2e38c721f6d95f9ea580ee22377c84202fd062",
"md5": "620e4ec1f4a93888dd6e023b1986ee47",
"sha256": "a8e5ae38d3571477edb4694fb1f1eab2fa98d3b988e271bb4d47f30472cfd084"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp312-cp312-macosx_11_0_x86_64.whl",
"has_sig": false,
"md5_digest": "620e4ec1f4a93888dd6e023b1986ee47",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 29396679,
"upload_time": "2025-07-08T17:27:56",
"upload_time_iso_8601": "2025-07-08T17:27:56.867497Z",
"url": "https://files.pythonhosted.org/packages/af/47/5245d5dab79250a11d51eb2e38c721f6d95f9ea580ee22377c84202fd062/bodo-2025.7.4-cp312-cp312-macosx_11_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f7486857a562b21e0116fc96ddbc957bed413456c02d71953abb9e35f754ebd2",
"md5": "9cc9b41a17f769fb2434c7294fbc1c5b",
"sha256": "6b66dff3b21c24898d0949b340f98a7fc2d501cf9f131655d35f96aea50d82a8"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp312-cp312-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "9cc9b41a17f769fb2434c7294fbc1c5b",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 24439416,
"upload_time": "2025-07-08T17:27:59",
"upload_time_iso_8601": "2025-07-08T17:27:59.830789Z",
"url": "https://files.pythonhosted.org/packages/f7/48/6857a562b21e0116fc96ddbc957bed413456c02d71953abb9e35f754ebd2/bodo-2025.7.4-cp312-cp312-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fd0089bddfb3c26fd8ae83d21aa1682d667d440302b533865748ae6c7a911578",
"md5": "eb756cd7cdb520e88e699411679a2cb6",
"sha256": "ee686bd8295f974f262920df8e2ec865b58e7c675fa9bd5ccb4d1631c2675117"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "eb756cd7cdb520e88e699411679a2cb6",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 37832758,
"upload_time": "2025-07-08T17:28:02",
"upload_time_iso_8601": "2025-07-08T17:28:02.865324Z",
"url": "https://files.pythonhosted.org/packages/fd/00/89bddfb3c26fd8ae83d21aa1682d667d440302b533865748ae6c7a911578/bodo-2025.7.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7d480ca00d828447d8e7680a9244a464ff0321642b23d48386d435b65a8200bb",
"md5": "cd906d4b371c4131f03732b4f823480a",
"sha256": "e1227783d1908558c30887ecb840e89fd3af16c6e426610516701f2f6237584b"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "cd906d4b371c4131f03732b4f823480a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 17902042,
"upload_time": "2025-07-08T17:28:06",
"upload_time_iso_8601": "2025-07-08T17:28:06.412809Z",
"url": "https://files.pythonhosted.org/packages/7d/48/0ca00d828447d8e7680a9244a464ff0321642b23d48386d435b65a8200bb/bodo-2025.7.4-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1837252b323d4b7040a5fce321e78a15ce8f11e3b1f8895c5cb50c8db78d3c7a",
"md5": "e84c642310a398511aec62847c6be47a",
"sha256": "21b306b374c0022389f2dc2f9281852ac41a130b2deb4ad548f026c73bc0ad4e"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp313-cp313-macosx_11_0_x86_64.whl",
"has_sig": false,
"md5_digest": "e84c642310a398511aec62847c6be47a",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 29407239,
"upload_time": "2025-07-08T17:28:09",
"upload_time_iso_8601": "2025-07-08T17:28:09.353373Z",
"url": "https://files.pythonhosted.org/packages/18/37/252b323d4b7040a5fce321e78a15ce8f11e3b1f8895c5cb50c8db78d3c7a/bodo-2025.7.4-cp313-cp313-macosx_11_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6c0411bb60c7a840f11c70b81d5606509b03fe467af011a40d16328b53716295",
"md5": "c0425263020ab4894a62c53427f14e2a",
"sha256": "7186a7a4f2c88be987d0a06d844e852a6d7bba39326bd65071c1fb2f90c43ff3"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp313-cp313-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "c0425263020ab4894a62c53427f14e2a",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 24441098,
"upload_time": "2025-07-08T17:28:12",
"upload_time_iso_8601": "2025-07-08T17:28:12.445197Z",
"url": "https://files.pythonhosted.org/packages/6c/04/11bb60c7a840f11c70b81d5606509b03fe467af011a40d16328b53716295/bodo-2025.7.4-cp313-cp313-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "51657991b2a0fb4487ccb27baa5ea7d05b19e8c4fad73c7c16642ac16f5ee776",
"md5": "f3fef674c3a994c2a47e4e3dadec7985",
"sha256": "cf830acdeb694a620f8d593d840cb20dbc2301085a920a9b29d1f66ea3b2eacd"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "f3fef674c3a994c2a47e4e3dadec7985",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 37708271,
"upload_time": "2025-07-08T17:28:15",
"upload_time_iso_8601": "2025-07-08T17:28:15.530702Z",
"url": "https://files.pythonhosted.org/packages/51/65/7991b2a0fb4487ccb27baa5ea7d05b19e8c4fad73c7c16642ac16f5ee776/bodo-2025.7.4-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "049c2369bebec365412776059a6b626317501e7a8b5e96b5b712be9f6a324926",
"md5": "d3a3a9cad6a213110276ac2a33bccda7",
"sha256": "e1a9424379c397de243e17f798a24d2fc78d765d1efd509dfac1e39ce3e6f413"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "d3a3a9cad6a213110276ac2a33bccda7",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 17899595,
"upload_time": "2025-07-08T17:28:19",
"upload_time_iso_8601": "2025-07-08T17:28:19.007295Z",
"url": "https://files.pythonhosted.org/packages/04/9c/2369bebec365412776059a6b626317501e7a8b5e96b5b712be9f6a324926/bodo-2025.7.4-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "cb1a80ac9e5474c8b5e7542aa4070b14447f6630501ef6a00d6a377385b0c9dd",
"md5": "0321772639b13062ba456c389ffa36e5",
"sha256": "ce3f59110e57deeede105fa7ee8f3fc18cea526fea93a8f464a90ad988870109"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp39-cp39-macosx_11_0_x86_64.whl",
"has_sig": false,
"md5_digest": "0321772639b13062ba456c389ffa36e5",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 29377891,
"upload_time": "2025-07-08T17:28:21",
"upload_time_iso_8601": "2025-07-08T17:28:21.766130Z",
"url": "https://files.pythonhosted.org/packages/cb/1a/80ac9e5474c8b5e7542aa4070b14447f6630501ef6a00d6a377385b0c9dd/bodo-2025.7.4-cp39-cp39-macosx_11_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7bd48115e47738b7c1812f4218cf553bc0761095de57edba927487c8ef5cc8ec",
"md5": "ccc6c0dd0c123b913e70a99441646a34",
"sha256": "7644b4ab43ae58e2a4e951c09c728a85c05383951e3c295aecf0ef483e9af3b9"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp39-cp39-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "ccc6c0dd0c123b913e70a99441646a34",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 24415694,
"upload_time": "2025-07-08T17:28:25",
"upload_time_iso_8601": "2025-07-08T17:28:25.147603Z",
"url": "https://files.pythonhosted.org/packages/7b/d4/8115e47738b7c1812f4218cf553bc0761095de57edba927487c8ef5cc8ec/bodo-2025.7.4-cp39-cp39-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6d7d762e0d599bbd252fbf25a6e77ac179cbf178c4f7165f40d37410badd171c",
"md5": "7480dffb691b312eb5ddea6085163be1",
"sha256": "32bfdf0c9d32f64e7c19b27ef87640a05baf435968eeb1a6e35bb09bc9ce8332"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "7480dffb691b312eb5ddea6085163be1",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 37559255,
"upload_time": "2025-07-08T17:32:07",
"upload_time_iso_8601": "2025-07-08T17:32:07.870877Z",
"url": "https://files.pythonhosted.org/packages/6d/7d/762e0d599bbd252fbf25a6e77ac179cbf178c4f7165f40d37410badd171c/bodo-2025.7.4-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6893f63f7bf3f66d25d48381592bf60c39fb1b9b2399bacf1eb23b7add0f9483",
"md5": "84f59801a0518a7a95c2d545f344ac7e",
"sha256": "93de5f447a30faa0290d3dc1b42bfaaabf1d60d080e81fa5877c0cff2a69bd26"
},
"downloads": -1,
"filename": "bodo-2025.7.4-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "84f59801a0518a7a95c2d545f344ac7e",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 17772203,
"upload_time": "2025-07-08T17:32:11",
"upload_time_iso_8601": "2025-07-08T17:32:11.436363Z",
"url": "https://files.pythonhosted.org/packages/68/93/f63f7bf3f66d25d48381592bf60c39fb1b9b2399bacf1eb23b7add0f9483/bodo-2025.7.4-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-08 17:27:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "bodo-ai",
"github_project": "Bodo",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "bodo"
}