Name | bodo JSON |
Version |
2025.7.5
JSON |
| download |
home_page | None |
Summary | High-Performance Python Compute Engine for Data and AI |
upload_time | 2025-07-14 22:30:44 |
maintainer | None |
docs_url | None |
author | Bodo.ai |
requires_python | >=3.9 |
license | None |
keywords |
data
analytics
cluster
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<!--
NOTE: the example in this file is covered by tests in bodo/tests/test_quickstart_docs.py. Any changes to the examples in this file should also update the corresponding unit test.
-->

<h3 align="center">
<a href="https://docs.bodo.ai/latest/" target="_blank"><b>Docs</b></a>
·
<a href="https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email" target="_blank"><b>Slack</b></a>
·
<a href="https://www.bodo.ai/benchmarks/" target="_blank"><b>Benchmarks</b></a>
</h3>
# Bodo: High-Performance Python Compute Engine for Data and AI
Bodo is a cutting edge compute engine for large scale Python data processing. Powered by an innovative auto-parallelizing just-in-time compiler, Bodo transforms Python programs into highly optimized, parallel binaries without requiring code rewrites, which makes Bodo [20x to 240x faster](https://github.com/bodo-ai/Bodo/tree/main/benchmarks/nyc_taxi) compared to alternatives!
<img src="benchmarks/img/nyc-taxi-benchmark.png" alt="NYC Taxi Benchmark" width="500"/>
Unlike traditional distributed computing frameworks, Bodo:
- Seamlessly supports native Python APIs like Pandas and NumPy.
- Eliminates runtime overheads common in driver-executor models by leveraging Message Passing Interface (MPI) tech for true distributed execution.
## Goals
Bodo makes Python run much (much!) faster than it normally does!
1. **Exceptional Performance:**
Deliver HPC-grade performance and scalability for Python data workloads as if the code was written in C++/MPI, whether running on a laptop or across large cloud clusters.
2. **Easy to Use:**
Easily integrate into Python workflows with a simple decorator, and support native Pandas and NumPy APIs.
3. **Interoperable:**
Compatible with regular Python ecosystem, and can selectively speed up only the functions that are Bodo supported.
4. **Integration with Modern Data Infrastructure:**
Provide robust support for industry-leading data platforms like Apache Iceberg and Snowflake, enabling smooth interoperability with existing ecosystems.
## Non-goals
1. *Full Python Language Support:*
We are currently focused on a targeted subset of Python used for data-intensive and computationally heavy workloads, rather than supporting the entire Python syntax and all library APIs.
2. *Non-Data Workloads:*
Prioritize applications in data engineering, data science, and AI/ML. Bodo is not designed for general-purpose use cases that are non-data-centric.
3. *Real-time Compilation:*
While compilation time is improving, Bodo is not yet optimized for scenarios requiring very short compilation times (e.g., workloads with execution times of only a few seconds).
## Key Features
- Automatic optimization & parallelization of Python programs using Pandas and NumPy.
- Linear scalability from laptops to large-scale clusters and supercomputers.
- Advanced scalable I/O support for Iceberg, Snowflake, Parquet, CSV, and JSON with automatic filter pushdown and column pruning for optimized data access.
- High performance SQL Engine that is natively integrated into Python.
See Bodo documentation to learn more: https://docs.bodo.ai/
## Installation
Note: Bodo requires Python 3.9+.
Bodo can be installed using Pip or Conda:
```bash
pip install -U bodo
```
or
```bash
conda create -n Bodo python=3.13 -c conda-forge
conda activate Bodo
conda install bodo -c conda-forge
```
Bodo works with Linux x86, both Mac x86 and Mac ARM, and Windows right now. We will have Linux ARM support (and more) coming soon!
## Example Code
Here is an example Pandas code that reads and processes a sample Parquet dataset with Bodo.
```python
import pandas as pd
import numpy as np
import bodo
import time
# Generate sample data
NUM_GROUPS = 30
NUM_ROWS = 20_000_000
df = pd.DataFrame({
"A": np.arange(NUM_ROWS) % NUM_GROUPS,
"B": np.arange(NUM_ROWS)
})
df.to_parquet("my_data.pq")
@bodo.jit(cache=True)
def computation():
t1 = time.time()
df = pd.read_parquet("my_data.pq")
df2 = pd.DataFrame({"A": df.apply(lambda r: 0 if r.A == 0 else (r.B // r.A), axis=1)})
df2.to_parquet("out.pq")
print("Execution time:", time.time() - t1)
computation()
```
## How to Contribute
Please read our latest [project contribution guide](CONTRIBUTING.md).
## Getting involved
You can join our community and collaborate with other contributors by joining our [Slack channel](https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email) – we’re excited to hear your ideas and help you get started!
[](https://codecov.io/github/bodo-ai/Bodo)
Raw data
{
"_id": null,
"home_page": null,
"name": "bodo",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "data, analytics, cluster",
"author": "Bodo.ai",
"author_email": null,
"download_url": null,
"platform": null,
"description": "<!--\nNOTE: the example in this file is covered by tests in bodo/tests/test_quickstart_docs.py. Any changes to the examples in this file should also update the corresponding unit test.\n -->\n\n\n\n<h3 align=\"center\">\n <a href=\"https://docs.bodo.ai/latest/\" target=\"_blank\"><b>Docs</b></a>\n · \n <a href=\"https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email\" target=\"_blank\"><b>Slack</b></a>\n · \n <a href=\"https://www.bodo.ai/benchmarks/\" target=\"_blank\"><b>Benchmarks</b></a>\n</h3>\n\n# Bodo: High-Performance Python Compute Engine for Data and AI\n\nBodo is a cutting edge compute engine for large scale Python data processing. Powered by an innovative auto-parallelizing just-in-time compiler, Bodo transforms Python programs into highly optimized, parallel binaries without requiring code rewrites, which makes Bodo [20x to 240x faster](https://github.com/bodo-ai/Bodo/tree/main/benchmarks/nyc_taxi) compared to alternatives!\n\n<img src=\"benchmarks/img/nyc-taxi-benchmark.png\" alt=\"NYC Taxi Benchmark\" width=\"500\"/>\n\nUnlike traditional distributed computing frameworks, Bodo:\n- Seamlessly supports native Python APIs like Pandas and NumPy.\n- Eliminates runtime overheads common in driver-executor models by leveraging Message Passing Interface (MPI) tech for true distributed execution.\n\n## Goals\n\nBodo makes Python run much (much!) faster than it normally does!\n\n1. **Exceptional Performance:**\nDeliver HPC-grade performance and scalability for Python data workloads as if the code was written in C++/MPI, whether running on a laptop or across large cloud clusters.\n\n2. **Easy to Use:**\nEasily integrate into Python workflows with a simple decorator, and support native Pandas and NumPy APIs.\n\n3. **Interoperable:**\nCompatible with regular Python ecosystem, and can selectively speed up only the functions that are Bodo supported.\n\n4. **Integration with Modern Data Infrastructure:**\nProvide robust support for industry-leading data platforms like Apache Iceberg and Snowflake, enabling smooth interoperability with existing ecosystems.\n\n\n## Non-goals\n\n1. *Full Python Language Support:*\nWe are currently focused on a targeted subset of Python used for data-intensive and computationally heavy workloads, rather than supporting the entire Python syntax and all library APIs.\n\n2. *Non-Data Workloads:*\nPrioritize applications in data engineering, data science, and AI/ML. Bodo is not designed for general-purpose use cases that are non-data-centric.\n\n3. *Real-time Compilation:*\nWhile compilation time is improving, Bodo is not yet optimized for scenarios requiring very short compilation times (e.g., workloads with execution times of only a few seconds).\n\n\n## Key Features\n\n- Automatic optimization & parallelization of Python programs using Pandas and NumPy.\n- Linear scalability from laptops to large-scale clusters and supercomputers.\n- Advanced scalable I/O support for Iceberg, Snowflake, Parquet, CSV, and JSON with automatic filter pushdown and column pruning for optimized data access.\n- High performance SQL Engine that is natively integrated into Python.\n\nSee Bodo documentation to learn more: https://docs.bodo.ai/\n\n\n## Installation\n\nNote: Bodo requires Python 3.9+.\n\nBodo can be installed using Pip or Conda:\n\n```bash\npip install -U bodo\n```\n\nor\n\n```bash\nconda create -n Bodo python=3.13 -c conda-forge\nconda activate Bodo\nconda install bodo -c conda-forge\n```\n\nBodo works with Linux x86, both Mac x86 and Mac ARM, and Windows right now. We will have Linux ARM support (and more) coming soon!\n\n## Example Code\n\nHere is an example Pandas code that reads and processes a sample Parquet dataset with Bodo.\n\n\n```python\nimport pandas as pd\nimport numpy as np\nimport bodo\nimport time\n\n# Generate sample data\nNUM_GROUPS = 30\nNUM_ROWS = 20_000_000\n\ndf = pd.DataFrame({\n \"A\": np.arange(NUM_ROWS) % NUM_GROUPS,\n \"B\": np.arange(NUM_ROWS)\n})\ndf.to_parquet(\"my_data.pq\")\n\n@bodo.jit(cache=True)\ndef computation():\n t1 = time.time()\n df = pd.read_parquet(\"my_data.pq\")\n df2 = pd.DataFrame({\"A\": df.apply(lambda r: 0 if r.A == 0 else (r.B // r.A), axis=1)})\n df2.to_parquet(\"out.pq\")\n print(\"Execution time:\", time.time() - t1)\n\ncomputation()\n```\n\n## How to Contribute\n\nPlease read our latest [project contribution guide](CONTRIBUTING.md).\n\n## Getting involved\n\nYou can join our community and collaborate with other contributors by joining our [Slack channel](https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email) \u2013 we\u2019re excited to hear your ideas and help you get started!\n\n[](https://codecov.io/github/bodo-ai/Bodo)",
"bugtrack_url": null,
"license": null,
"summary": "High-Performance Python Compute Engine for Data and AI",
"version": "2025.7.5",
"project_urls": {
"Documentation": "https://docs.bodo.ai",
"Homepage": "https://bodo.ai",
"Repository": "https://github.com/bodo-ai/Bodo"
},
"split_keywords": [
"data",
" analytics",
" cluster"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "5c6315571952e921f8d9517803ea4ac06374f9a8c01f4a63ac0ae52787763cc0",
"md5": "968b778234069156d380d30414bec266",
"sha256": "63ff0918ec16e45fdabbd565468d3abfe448b89b8b42062fcf07ac1ad27d04c9"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp310-cp310-macosx_11_0_x86_64.whl",
"has_sig": false,
"md5_digest": "968b778234069156d380d30414bec266",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 29388318,
"upload_time": "2025-07-14T22:30:44",
"upload_time_iso_8601": "2025-07-14T22:30:44.342403Z",
"url": "https://files.pythonhosted.org/packages/5c/63/15571952e921f8d9517803ea4ac06374f9a8c01f4a63ac0ae52787763cc0/bodo-2025.7.5-cp310-cp310-macosx_11_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5378aefe4ee246feadf4f4e689a692ea139295910c1049356bfca6aa9c251cd8",
"md5": "e839a07b50e4b0f8de22bbc7a35ed0d7",
"sha256": "a61a64719dd0cb3efc921ecaa82e067016efbde47d653584b1df8f44d58a471e"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp310-cp310-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "e839a07b50e4b0f8de22bbc7a35ed0d7",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 24429104,
"upload_time": "2025-07-14T22:30:47",
"upload_time_iso_8601": "2025-07-14T22:30:47.167748Z",
"url": "https://files.pythonhosted.org/packages/53/78/aefe4ee246feadf4f4e689a692ea139295910c1049356bfca6aa9c251cd8/bodo-2025.7.5-cp310-cp310-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "66a47e5be5698dfaa6bf94e91a2cd05c201f23fa22401e3588a4697bc0a6ec7a",
"md5": "fcfb3093d7724390c5fa17a7d372dcbb",
"sha256": "fc7c42ca15208fd03d14e6997a0d5501154f49d500ce47e0e0fb8caaf4e876e5"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "fcfb3093d7724390c5fa17a7d372dcbb",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 37630708,
"upload_time": "2025-07-14T22:30:49",
"upload_time_iso_8601": "2025-07-14T22:30:49.673820Z",
"url": "https://files.pythonhosted.org/packages/66/a4/7e5be5698dfaa6bf94e91a2cd05c201f23fa22401e3588a4697bc0a6ec7a/bodo-2025.7.5-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1eaab363bd56d1692dca4cb068a2122bcbffff41202956f8133279fe6f7d9fca",
"md5": "532c6ab15e4ee775fe62a7b4bc3f3dcd",
"sha256": "816565bed635b83fac8312146f43ebdffd46f3a5a227283eb27969554fe85426"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "532c6ab15e4ee775fe62a7b4bc3f3dcd",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 17779107,
"upload_time": "2025-07-14T22:30:52",
"upload_time_iso_8601": "2025-07-14T22:30:52.359561Z",
"url": "https://files.pythonhosted.org/packages/1e/aa/b363bd56d1692dca4cb068a2122bcbffff41202956f8133279fe6f7d9fca/bodo-2025.7.5-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9466d0b437b0528f2151c7d3c172ea6368cbfa4146e27a7eeb5abf43a99a2286",
"md5": "765bac87f934f1944b5b3926a7e8d8ca",
"sha256": "95e219a8b26ac4a070461442aacd46ecfde2877a1cb76b4077e4007c0a27acd3"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp311-cp311-macosx_11_0_x86_64.whl",
"has_sig": false,
"md5_digest": "765bac87f934f1944b5b3926a7e8d8ca",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 29394111,
"upload_time": "2025-07-14T22:30:54",
"upload_time_iso_8601": "2025-07-14T22:30:54.745012Z",
"url": "https://files.pythonhosted.org/packages/94/66/d0b437b0528f2151c7d3c172ea6368cbfa4146e27a7eeb5abf43a99a2286/bodo-2025.7.5-cp311-cp311-macosx_11_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a4e521b3103503fb194412e629a4e66acb37f248cd961f6e9f638c59a0219bd9",
"md5": "df7c911307ab5bd7414204ecc6776d0d",
"sha256": "4742e7cbc6ebdbf53a4a797269dab7e902e7d79842a2472f64598217c130d620"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp311-cp311-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "df7c911307ab5bd7414204ecc6776d0d",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 24432973,
"upload_time": "2025-07-14T22:30:57",
"upload_time_iso_8601": "2025-07-14T22:30:57.216890Z",
"url": "https://files.pythonhosted.org/packages/a4/e5/21b3103503fb194412e629a4e66acb37f248cd961f6e9f638c59a0219bd9/bodo-2025.7.5-cp311-cp311-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f18b3dcbe81f7a6409679021ff2300ca16e254eacf82e652837e474dda5330c0",
"md5": "4011c005dc63cbec6ee6952ff20660fc",
"sha256": "705c2d9b07cbfad6c1c782a7336e3188bf9c73234d78a7fc86edcbfacd79fcba"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "4011c005dc63cbec6ee6952ff20660fc",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 37854787,
"upload_time": "2025-07-14T22:31:00",
"upload_time_iso_8601": "2025-07-14T22:31:00.622642Z",
"url": "https://files.pythonhosted.org/packages/f1/8b/3dcbe81f7a6409679021ff2300ca16e254eacf82e652837e474dda5330c0/bodo-2025.7.5-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7474904776c9006d59069ea38c6147459c75c2d2b87a8e83182eeb332b67e634",
"md5": "1fed44a49495962fab5353f78ccda8b5",
"sha256": "9a60eb4e6f072094b1e373eb3f9f19344e845a2f740ca1e06da867c04f5d88fb"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "1fed44a49495962fab5353f78ccda8b5",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 17790486,
"upload_time": "2025-07-14T22:31:03",
"upload_time_iso_8601": "2025-07-14T22:31:03.365031Z",
"url": "https://files.pythonhosted.org/packages/74/74/904776c9006d59069ea38c6147459c75c2d2b87a8e83182eeb332b67e634/bodo-2025.7.5-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ed96ae3bc078ef98b3ffa079c64275b819deb74a476313b5ce75aed2807d7ec1",
"md5": "603e26f4c4f2f11415f722cea3368888",
"sha256": "0b5151d2a72d4a85ed6629ac8703a11b0f7faa4a303f59aaeee208900b31a1a4"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp312-cp312-macosx_11_0_x86_64.whl",
"has_sig": false,
"md5_digest": "603e26f4c4f2f11415f722cea3368888",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 29409217,
"upload_time": "2025-07-14T22:31:05",
"upload_time_iso_8601": "2025-07-14T22:31:05.638459Z",
"url": "https://files.pythonhosted.org/packages/ed/96/ae3bc078ef98b3ffa079c64275b819deb74a476313b5ce75aed2807d7ec1/bodo-2025.7.5-cp312-cp312-macosx_11_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fdd9565a41182ce90e598c76388df1b140c76d3c963b43fb049bda1c8dde9223",
"md5": "035a4f205736950a3e94377341556d53",
"sha256": "1966cad69bc74d7d28cb8843f00d1214e1e8b7caa99ed19ece7666e50525c0ea"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp312-cp312-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "035a4f205736950a3e94377341556d53",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 24452318,
"upload_time": "2025-07-14T22:31:08",
"upload_time_iso_8601": "2025-07-14T22:31:08.371976Z",
"url": "https://files.pythonhosted.org/packages/fd/d9/565a41182ce90e598c76388df1b140c76d3c963b43fb049bda1c8dde9223/bodo-2025.7.5-cp312-cp312-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "aca233260764cca36914d125c0f0b660883b4b6eb497f1c6e0781134b3d5f702",
"md5": "b0405b2cfecda926563871f230d471ba",
"sha256": "d959e4a862c5f243b868384bd38832053b2f155832f0129acec9570c9c68b13b"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "b0405b2cfecda926563871f230d471ba",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 37848936,
"upload_time": "2025-07-14T22:31:11",
"upload_time_iso_8601": "2025-07-14T22:31:11.365660Z",
"url": "https://files.pythonhosted.org/packages/ac/a2/33260764cca36914d125c0f0b660883b4b6eb497f1c6e0781134b3d5f702/bodo-2025.7.5-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5b3c2ead8b817d5b7d478c355e4ecb3cfc048a1fb5f91e70097de3b1512f89af",
"md5": "c3e9c60abf4876231cb02b5fbd0dbb38",
"sha256": "a89ce258329e0093444983e3a956a4d39e2aeb4de8d85e1039cc5300f023a448"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "c3e9c60abf4876231cb02b5fbd0dbb38",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 17914158,
"upload_time": "2025-07-14T22:31:14",
"upload_time_iso_8601": "2025-07-14T22:31:14.346751Z",
"url": "https://files.pythonhosted.org/packages/5b/3c/2ead8b817d5b7d478c355e4ecb3cfc048a1fb5f91e70097de3b1512f89af/bodo-2025.7.5-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4a09d82a7476b4d5799762f45c3ab4c1483f101acb8b3027a7e9f4881a3b4845",
"md5": "a570ef603c8d67291f12a4a8c65d3973",
"sha256": "94f2ab0aa40167414a76b46e04f8e6c07a003b67dca39bb2778c680d57bf0d25"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp313-cp313-macosx_11_0_x86_64.whl",
"has_sig": false,
"md5_digest": "a570ef603c8d67291f12a4a8c65d3973",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 29418781,
"upload_time": "2025-07-14T22:31:16",
"upload_time_iso_8601": "2025-07-14T22:31:16.806763Z",
"url": "https://files.pythonhosted.org/packages/4a/09/d82a7476b4d5799762f45c3ab4c1483f101acb8b3027a7e9f4881a3b4845/bodo-2025.7.5-cp313-cp313-macosx_11_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3085260e8fe6a2124e77a9c4400be22de9053c02fcc87f69e7458f19c65673a9",
"md5": "c7906863d40a71d4ef7d03e9cd6ef313",
"sha256": "674c7da529e48bf86575407ba8e80b45ebf8bafba4bbf64ee005d27d18391842"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp313-cp313-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "c7906863d40a71d4ef7d03e9cd6ef313",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 24454925,
"upload_time": "2025-07-14T22:31:19",
"upload_time_iso_8601": "2025-07-14T22:31:19.716632Z",
"url": "https://files.pythonhosted.org/packages/30/85/260e8fe6a2124e77a9c4400be22de9053c02fcc87f69e7458f19c65673a9/bodo-2025.7.5-cp313-cp313-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "625147599c00da9e2eb2c13e4a98c303f0cbd9498bd2543dbaacaf12496c238c",
"md5": "dd6710867e42c5f9f338d65bcae529d3",
"sha256": "d8cbef1214e720776e4267bd2d82260a8f6ba19ae7d52a38946f852456a118e9"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "dd6710867e42c5f9f338d65bcae529d3",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 37724405,
"upload_time": "2025-07-14T22:31:22",
"upload_time_iso_8601": "2025-07-14T22:31:22.036812Z",
"url": "https://files.pythonhosted.org/packages/62/51/47599c00da9e2eb2c13e4a98c303f0cbd9498bd2543dbaacaf12496c238c/bodo-2025.7.5-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "39ed30c4a6f9a5b453dd23c19df8b218a8565c2861b1a3d5c2db1e099a9fa6cc",
"md5": "beb05d3c9d7c6675218caf42022617b6",
"sha256": "26bb51eeac527f7b25800ed84315155ea696a22aa5a5d0309653924be3bc6620"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "beb05d3c9d7c6675218caf42022617b6",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.9",
"size": 17911345,
"upload_time": "2025-07-14T22:31:24",
"upload_time_iso_8601": "2025-07-14T22:31:24.466508Z",
"url": "https://files.pythonhosted.org/packages/39/ed/30c4a6f9a5b453dd23c19df8b218a8565c2861b1a3d5c2db1e099a9fa6cc/bodo-2025.7.5-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "702cb54acd08e720b1a155367d177fa0b6955bfc1e443e527983318ed6111b11",
"md5": "b2dd6c80b45e9a23adb82adb31c57bcc",
"sha256": "19fe336baf70d9ac4fc66021047004268cd24efaf9486e4ae51a84c5b6437651"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp39-cp39-macosx_11_0_x86_64.whl",
"has_sig": false,
"md5_digest": "b2dd6c80b45e9a23adb82adb31c57bcc",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 29390860,
"upload_time": "2025-07-14T22:31:26",
"upload_time_iso_8601": "2025-07-14T22:31:26.747070Z",
"url": "https://files.pythonhosted.org/packages/70/2c/b54acd08e720b1a155367d177fa0b6955bfc1e443e527983318ed6111b11/bodo-2025.7.5-cp39-cp39-macosx_11_0_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9ffe0a286fa27843de1d86a9e7f5b84013f08b86bf5e658b2ab8af5c4486b299",
"md5": "475e3b3a34479d6aca603388a2287d8a",
"sha256": "9c704205ad73b4358c409811c56c22bd816bddbcef43e14ae6452cbaca36220c"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp39-cp39-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "475e3b3a34479d6aca603388a2287d8a",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 24431331,
"upload_time": "2025-07-14T22:31:29",
"upload_time_iso_8601": "2025-07-14T22:31:29.927257Z",
"url": "https://files.pythonhosted.org/packages/9f/fe/0a286fa27843de1d86a9e7f5b84013f08b86bf5e658b2ab8af5c4486b299/bodo-2025.7.5-cp39-cp39-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8d5ff9623004dbf45d1d4d0460073e341bb31face54ad4204e033a7847f7f4aa",
"md5": "031a76bdebf1e83d7fb12dfbcc985329",
"sha256": "b98ccc6037f978811761017ec4d8370ef590bf5c2f2bed73e29ce5cbd3fa34ba"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "031a76bdebf1e83d7fb12dfbcc985329",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 37577832,
"upload_time": "2025-07-14T22:31:32",
"upload_time_iso_8601": "2025-07-14T22:31:32.336076Z",
"url": "https://files.pythonhosted.org/packages/8d/5f/f9623004dbf45d1d4d0460073e341bb31face54ad4204e033a7847f7f4aa/bodo-2025.7.5-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "cbc1a3f3b1c3d313a753510451a06203822d0dcb1d3dd2c8e0203f289ce48256",
"md5": "0798fc013648671a27dd466968bc3e7f",
"sha256": "49db466143b936fdbb2a0ba5cf68ad049118513449da6480468ebc6a54866232"
},
"downloads": -1,
"filename": "bodo-2025.7.5-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "0798fc013648671a27dd466968bc3e7f",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 17782213,
"upload_time": "2025-07-14T22:31:34",
"upload_time_iso_8601": "2025-07-14T22:31:34.746670Z",
"url": "https://files.pythonhosted.org/packages/cb/c1/a3f3b1c3d313a753510451a06203822d0dcb1d3dd2c8e0203f289ce48256/bodo-2025.7.5-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-14 22:30:44",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "bodo-ai",
"github_project": "Bodo",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "bodo"
}