bodo


Namebodo JSON
Version 2025.4 PyPI version JSON
download
home_pageNone
SummaryHigh-Performance Python Compute Engine for Data and AI
upload_time2025-04-07 21:42:43
maintainerNone
docs_urlNone
authorBodo.ai
requires_python<3.13,>=3.10
licenseNone
keywords data analytics cluster
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!--
NOTE: the example in this file is covered by tests in bodo/tests/test_quickstart_docs.py. Any changes to the examples in this file should also update the corresponding unit test.
 -->

![Logo](Assets/bodo.png)

<h3 align="center">
  <a href="https://docs.bodo.ai/latest/" target="_blank"><b>Docs</b></a>
  &nbsp;&#183;&nbsp;
  <a href="https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email" target="_blank"><b>Slack</b></a>
  &nbsp;&#183;&nbsp;
  <a href="https://www.bodo.ai/benchmarks/" target="_blank"><b>Benchmarks</b></a>
</h3>

# Bodo: High-Performance Python Compute Engine for Data and AI

Bodo is a cutting edge compute engine for large scale Python data processing. Powered by an innovative auto-parallelizing just-in-time compiler, Bodo transforms Python programs into highly optimized, parallel binaries without requiring code rewrites, which makes Bodo [20x to 240x faster](https://github.com/bodo-ai/Bodo/tree/main/benchmarks/nyc_taxi) compared to alternatives!

<img src="benchmarks/img/nyc-taxi-benchmark.png" alt="NYC Taxi Benchmark" width="500"/>

Unlike traditional distributed computing frameworks, Bodo:
- Seamlessly supports native Python APIs like Pandas and NumPy.
- Eliminates runtime overheads common in driver-executor models by leveraging Message Passing Interface (MPI) tech for true distributed execution.

## Goals

Bodo makes Python run much (much!) faster than it normally does!

1. **Exceptional Performance:**
Deliver HPC-grade performance and scalability for Python data workloads as if the code was written in C++/MPI, whether running on a laptop or across large cloud clusters.

2. **Easy to Use:**
Easily integrate into Python workflows with a simple decorator, and support native Pandas and NumPy APIs.

3. **Interoperable:**
Compatible with regular Python ecosystem, and can selectively speed up only the functions that are Bodo supported.

4. **Integration with Modern Data Infrastructure:**
Provide robust support for industry-leading data platforms like Apache Iceberg and Snowflake, enabling smooth interoperability with existing ecosystems.


## Non-goals

1. *Full Python Language Support:*
We are currently focused on a targeted subset of Python used for data-intensive and computationally heavy workloads, rather than supporting the entire Python syntax and all library APIs.

2. *Non-Data Workloads:*
Prioritize applications in data engineering, data science, and AI/ML. Bodo is not designed for general-purpose use cases that are non-data-centric.

3. *Real-time Compilation:*
While compilation time is improving, Bodo is not yet optimized for scenarios requiring very short compilation times (e.g., workloads with execution times of only a few seconds).


## Key Features

- Automatic optimization & parallelization of Python programs using Pandas and NumPy.
- Linear scalability from laptops to large-scale clusters and supercomputers.
- Advanced scalable I/O support for Iceberg, Snowflake, Parquet, CSV, and JSON with automatic filter pushdown and column pruning for optimized data access.
- High performance SQL Engine that is natively integrated into Python.

See Bodo documentation to learn more: https://docs.bodo.ai/


## Installation

Note: Bodo requires Python 3.10, 3.11, or 3.12.

Bodo can be installed using Pip or Conda:

```bash
pip install -U bodo
```

or

```bash
conda create -n Bodo python=3.12 -c conda-forge
conda activate Bodo
conda install bodo -c bodo.ai -c conda-forge
```

Bodo works with Linux x86, both Mac x86 and Mac ARM, and Windows right now. We will have Linux ARM support (and more) coming soon!

## Example Code

Here is an example Pandas code that reads and processes a sample Parquet dataset with Bodo.


```python
import pandas as pd
import numpy as np
import bodo
import time

# Generate sample data
NUM_GROUPS = 30
NUM_ROWS = 20_000_000

df = pd.DataFrame({
    "A": np.arange(NUM_ROWS) % NUM_GROUPS,
    "B": np.arange(NUM_ROWS)
})
df.to_parquet("my_data.pq")

@bodo.jit(cache=True)
def computation():
    t1 = time.time()
    df = pd.read_parquet("my_data.pq")
    df2 = pd.DataFrame({"A": df.apply(lambda r: 0 if r.A == 0 else (r.B // r.A), axis=1)})
    df2.to_parquet("out.pq")
    print("Execution time:", time.time() - t1)

computation()
```

## How to Contribute

Please read our latest [project contribution guide](CONTRIBUTING.md).

## Getting involved

You can join our community and collaborate with other contributors by joining our [Slack channel](https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email) – we’re excited to hear your ideas and help you get started!

[![codecov](https://codecov.io/github/bodo-ai/Bodo/graph/badge.svg?token=zYHQy0R9ck)](https://codecov.io/github/bodo-ai/Bodo)
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "bodo",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.10",
    "maintainer_email": null,
    "keywords": "data, analytics, cluster",
    "author": "Bodo.ai",
    "author_email": null,
    "download_url": null,
    "platform": null,
    "description": "<!--\nNOTE: the example in this file is covered by tests in bodo/tests/test_quickstart_docs.py. Any changes to the examples in this file should also update the corresponding unit test.\n -->\n\n![Logo](Assets/bodo.png)\n\n<h3 align=\"center\">\n  <a href=\"https://docs.bodo.ai/latest/\" target=\"_blank\"><b>Docs</b></a>\n  &nbsp;&#183;&nbsp;\n  <a href=\"https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email\" target=\"_blank\"><b>Slack</b></a>\n  &nbsp;&#183;&nbsp;\n  <a href=\"https://www.bodo.ai/benchmarks/\" target=\"_blank\"><b>Benchmarks</b></a>\n</h3>\n\n# Bodo: High-Performance Python Compute Engine for Data and AI\n\nBodo is a cutting edge compute engine for large scale Python data processing. Powered by an innovative auto-parallelizing just-in-time compiler, Bodo transforms Python programs into highly optimized, parallel binaries without requiring code rewrites, which makes Bodo [20x to 240x faster](https://github.com/bodo-ai/Bodo/tree/main/benchmarks/nyc_taxi) compared to alternatives!\n\n<img src=\"benchmarks/img/nyc-taxi-benchmark.png\" alt=\"NYC Taxi Benchmark\" width=\"500\"/>\n\nUnlike traditional distributed computing frameworks, Bodo:\n- Seamlessly supports native Python APIs like Pandas and NumPy.\n- Eliminates runtime overheads common in driver-executor models by leveraging Message Passing Interface (MPI) tech for true distributed execution.\n\n## Goals\n\nBodo makes Python run much (much!) faster than it normally does!\n\n1. **Exceptional Performance:**\nDeliver HPC-grade performance and scalability for Python data workloads as if the code was written in C++/MPI, whether running on a laptop or across large cloud clusters.\n\n2. **Easy to Use:**\nEasily integrate into Python workflows with a simple decorator, and support native Pandas and NumPy APIs.\n\n3. **Interoperable:**\nCompatible with regular Python ecosystem, and can selectively speed up only the functions that are Bodo supported.\n\n4. **Integration with Modern Data Infrastructure:**\nProvide robust support for industry-leading data platforms like Apache Iceberg and Snowflake, enabling smooth interoperability with existing ecosystems.\n\n\n## Non-goals\n\n1. *Full Python Language Support:*\nWe are currently focused on a targeted subset of Python used for data-intensive and computationally heavy workloads, rather than supporting the entire Python syntax and all library APIs.\n\n2. *Non-Data Workloads:*\nPrioritize applications in data engineering, data science, and AI/ML. Bodo is not designed for general-purpose use cases that are non-data-centric.\n\n3. *Real-time Compilation:*\nWhile compilation time is improving, Bodo is not yet optimized for scenarios requiring very short compilation times (e.g., workloads with execution times of only a few seconds).\n\n\n## Key Features\n\n- Automatic optimization & parallelization of Python programs using Pandas and NumPy.\n- Linear scalability from laptops to large-scale clusters and supercomputers.\n- Advanced scalable I/O support for Iceberg, Snowflake, Parquet, CSV, and JSON with automatic filter pushdown and column pruning for optimized data access.\n- High performance SQL Engine that is natively integrated into Python.\n\nSee Bodo documentation to learn more: https://docs.bodo.ai/\n\n\n## Installation\n\nNote: Bodo requires Python 3.10, 3.11, or 3.12.\n\nBodo can be installed using Pip or Conda:\n\n```bash\npip install -U bodo\n```\n\nor\n\n```bash\nconda create -n Bodo python=3.12 -c conda-forge\nconda activate Bodo\nconda install bodo -c bodo.ai -c conda-forge\n```\n\nBodo works with Linux x86, both Mac x86 and Mac ARM, and Windows right now. We will have Linux ARM support (and more) coming soon!\n\n## Example Code\n\nHere is an example Pandas code that reads and processes a sample Parquet dataset with Bodo.\n\n\n```python\nimport pandas as pd\nimport numpy as np\nimport bodo\nimport time\n\n# Generate sample data\nNUM_GROUPS = 30\nNUM_ROWS = 20_000_000\n\ndf = pd.DataFrame({\n    \"A\": np.arange(NUM_ROWS) % NUM_GROUPS,\n    \"B\": np.arange(NUM_ROWS)\n})\ndf.to_parquet(\"my_data.pq\")\n\n@bodo.jit(cache=True)\ndef computation():\n    t1 = time.time()\n    df = pd.read_parquet(\"my_data.pq\")\n    df2 = pd.DataFrame({\"A\": df.apply(lambda r: 0 if r.A == 0 else (r.B // r.A), axis=1)})\n    df2.to_parquet(\"out.pq\")\n    print(\"Execution time:\", time.time() - t1)\n\ncomputation()\n```\n\n## How to Contribute\n\nPlease read our latest [project contribution guide](CONTRIBUTING.md).\n\n## Getting involved\n\nYou can join our community and collaborate with other contributors by joining our [Slack channel](https://bodocommunity.slack.com/join/shared_invite/zt-qwdc8fad-6rZ8a1RmkkJ6eOX1X__knA#/shared-invite/email) \u2013 we\u2019re excited to hear your ideas and help you get started!\n\n[![codecov](https://codecov.io/github/bodo-ai/Bodo/graph/badge.svg?token=zYHQy0R9ck)](https://codecov.io/github/bodo-ai/Bodo)",
    "bugtrack_url": null,
    "license": null,
    "summary": "High-Performance Python Compute Engine for Data and AI",
    "version": "2025.4",
    "project_urls": {
        "Documentation": "https://docs.bodo.ai",
        "Homepage": "https://bodo.ai",
        "Repository": "https://github.com/bodo-ai/Bodo"
    },
    "split_keywords": [
        "data",
        " analytics",
        " cluster"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5da25c0487964f525b0bf818a6b41973b847c02afef1bc6e0c1ffa3d5266aa11",
                "md5": "8cd084117031902d91a9521a83a47864",
                "sha256": "c5cc6436e19b5cb1029394161224a23f41fbaf24b1fa4a6c4cd4c8c1be58792d"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp310-cp310-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "8cd084117031902d91a9521a83a47864",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "<3.13,>=3.10",
            "size": 47312970,
            "upload_time": "2025-04-07T21:42:43",
            "upload_time_iso_8601": "2025-04-07T21:42:43.613517Z",
            "url": "https://files.pythonhosted.org/packages/5d/a2/5c0487964f525b0bf818a6b41973b847c02afef1bc6e0c1ffa3d5266aa11/bodo-2025.4-cp310-cp310-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "cf0cb15f0aa623f6b5f2c3986426c5a0afb5ed8633291829e19ef9928e1997c9",
                "md5": "883854ac1bc03f2e112532f433cf5dfd",
                "sha256": "6d0198372c3df2b5ddf89b7e65f3f62040f571f61848c13ec617050102d7ef7b"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp310-cp310-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "883854ac1bc03f2e112532f433cf5dfd",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "<3.13,>=3.10",
            "size": 33448018,
            "upload_time": "2025-04-07T21:42:47",
            "upload_time_iso_8601": "2025-04-07T21:42:47.236142Z",
            "url": "https://files.pythonhosted.org/packages/cf/0c/b15f0aa623f6b5f2c3986426c5a0afb5ed8633291829e19ef9928e1997c9/bodo-2025.4-cp310-cp310-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3b14bc9dfa9faeb0f8f4db947fdaf28865948afe0e8ce6e069f02f8eed8fb195",
                "md5": "f46fe6b968b0e27b3b86582d342e9b07",
                "sha256": "c5ecfbe7a09a65d66e50d5cc07ce52afe5255b5e2b91707e74bc07b7eef869c7"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp310-cp310-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "f46fe6b968b0e27b3b86582d342e9b07",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "<3.13,>=3.10",
            "size": 49760828,
            "upload_time": "2025-04-07T21:42:51",
            "upload_time_iso_8601": "2025-04-07T21:42:51.030377Z",
            "url": "https://files.pythonhosted.org/packages/3b/14/bc9dfa9faeb0f8f4db947fdaf28865948afe0e8ce6e069f02f8eed8fb195/bodo-2025.4-cp310-cp310-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0479cf2fbe0542f8f15ddbe9f04d1b17586698a43064c69a82f97f2b5b65b381",
                "md5": "39a075e36bf85f1a8c128107704847c7",
                "sha256": "503b4a3f66b7219f33fafb569eddaf5fd0989bcb22515db1924b2c039c973c3e"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp310-cp310-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "39a075e36bf85f1a8c128107704847c7",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": "<3.13,>=3.10",
            "size": 13050924,
            "upload_time": "2025-04-07T21:42:53",
            "upload_time_iso_8601": "2025-04-07T21:42:53.809219Z",
            "url": "https://files.pythonhosted.org/packages/04/79/cf2fbe0542f8f15ddbe9f04d1b17586698a43064c69a82f97f2b5b65b381/bodo-2025.4-cp310-cp310-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "42e77d1f8a8954d7c3efaef6804bbac80f5bdd148f524d6a12426733f5dbd16d",
                "md5": "7256eba7e5aa0619a7eef1cd25df4ace",
                "sha256": "69203810149e90b2ad02c1623f37564171532a69153a612f0762b82c1a28149f"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp311-cp311-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7256eba7e5aa0619a7eef1cd25df4ace",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "<3.13,>=3.10",
            "size": 47302586,
            "upload_time": "2025-04-07T21:42:56",
            "upload_time_iso_8601": "2025-04-07T21:42:56.437522Z",
            "url": "https://files.pythonhosted.org/packages/42/e7/7d1f8a8954d7c3efaef6804bbac80f5bdd148f524d6a12426733f5dbd16d/bodo-2025.4-cp311-cp311-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "38b74c71132649396a199d07f6a707460ca0b4e845f608b4d54b459480bce8cd",
                "md5": "47ec5855ed063b6ed05a2c7986abaf90",
                "sha256": "a03421b8030075f9fd5d865b3d1c59e3333e830c13e0bc371d8188d302dca0f8"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp311-cp311-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "47ec5855ed063b6ed05a2c7986abaf90",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "<3.13,>=3.10",
            "size": 33433557,
            "upload_time": "2025-04-07T21:43:00",
            "upload_time_iso_8601": "2025-04-07T21:43:00.366899Z",
            "url": "https://files.pythonhosted.org/packages/38/b7/4c71132649396a199d07f6a707460ca0b4e845f608b4d54b459480bce8cd/bodo-2025.4-cp311-cp311-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5852a25d3460f580b900106328565d98a381b7d24f0d176a8b713b8a4df1953d",
                "md5": "68a3330761436c736aaf85855bd94e09",
                "sha256": "14a3f080dc2107b62b8009ecd6fecdd0eb3d988b2147207dc517e8e10a7527c5"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp311-cp311-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "68a3330761436c736aaf85855bd94e09",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "<3.13,>=3.10",
            "size": 49996128,
            "upload_time": "2025-04-07T21:43:03",
            "upload_time_iso_8601": "2025-04-07T21:43:03.684843Z",
            "url": "https://files.pythonhosted.org/packages/58/52/a25d3460f580b900106328565d98a381b7d24f0d176a8b713b8a4df1953d/bodo-2025.4-cp311-cp311-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e779f737c086db7ce4bbbf467720f10de34e5d53af575a5eb61ad31be1c78b7f",
                "md5": "89587c1a89dacce8f25477ba097ee203",
                "sha256": "e3b9d231dfee06d0da6383fc5c085ccd93db8aa9a2fc8e4a2c8fa7a2c6723725"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp311-cp311-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "89587c1a89dacce8f25477ba097ee203",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": "<3.13,>=3.10",
            "size": 13063035,
            "upload_time": "2025-04-07T21:43:07",
            "upload_time_iso_8601": "2025-04-07T21:43:07.496959Z",
            "url": "https://files.pythonhosted.org/packages/e7/79/f737c086db7ce4bbbf467720f10de34e5d53af575a5eb61ad31be1c78b7f/bodo-2025.4-cp311-cp311-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "77f026a5eb054d93c29a80451c0390672331450735dd7e66bd133d0d2527eab3",
                "md5": "5ff913e027a191a3aedc6be3fee9f083",
                "sha256": "49537077cd77f71d49c0be2d8eedc3c75a649c4a3bc8363495304864ca5f2421"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp312-cp312-macosx_10_15_x86_64.whl",
            "has_sig": false,
            "md5_digest": "5ff913e027a191a3aedc6be3fee9f083",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": "<3.13,>=3.10",
            "size": 47286190,
            "upload_time": "2025-04-07T21:43:10",
            "upload_time_iso_8601": "2025-04-07T21:43:10.583269Z",
            "url": "https://files.pythonhosted.org/packages/77/f0/26a5eb054d93c29a80451c0390672331450735dd7e66bd133d0d2527eab3/bodo-2025.4-cp312-cp312-macosx_10_15_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "48a667b0feb21a78bd8fc97ae5c718095039168047ced520ea65a6a172cb76a6",
                "md5": "7164427f7abdfc78af3329931034a1e4",
                "sha256": "01222976a3ed2bb1f85057cc9b5b70a9231126d062da19a9641aa12d09bc9ed9"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp312-cp312-macosx_12_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "7164427f7abdfc78af3329931034a1e4",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": "<3.13,>=3.10",
            "size": 33421172,
            "upload_time": "2025-04-07T21:43:13",
            "upload_time_iso_8601": "2025-04-07T21:43:13.626698Z",
            "url": "https://files.pythonhosted.org/packages/48/a6/67b0feb21a78bd8fc97ae5c718095039168047ced520ea65a6a172cb76a6/bodo-2025.4-cp312-cp312-macosx_12_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6b9e0b92b846ccee2cc142a7b4ffc88d4fd042e49d1f83763283a4eba2a311b8",
                "md5": "08235e2d79ed26912677d86c3c336135",
                "sha256": "039592872ee475e7cdfbecb7b0b4c2a54e550325a58838e3f8bf73574fe6bea6"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp312-cp312-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "08235e2d79ed26912677d86c3c336135",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": "<3.13,>=3.10",
            "size": 50179390,
            "upload_time": "2025-04-07T21:43:17",
            "upload_time_iso_8601": "2025-04-07T21:43:17.095413Z",
            "url": "https://files.pythonhosted.org/packages/6b/9e/0b92b846ccee2cc142a7b4ffc88d4fd042e49d1f83763283a4eba2a311b8/bodo-2025.4-cp312-cp312-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1f75924a93c051a94b53ac14e3a77d7a945ec69e163eb24f7f3437bf374f6ebb",
                "md5": "7d0d2fc099effd3a30413475c3fad475",
                "sha256": "6c53a5bdd6fc356dbf66ef9a49a0f19a1f1ae13e38cf7d0a207247460422c4b3"
            },
            "downloads": -1,
            "filename": "bodo-2025.4-cp312-cp312-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "7d0d2fc099effd3a30413475c3fad475",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": "<3.13,>=3.10",
            "size": 13185109,
            "upload_time": "2025-04-07T21:43:20",
            "upload_time_iso_8601": "2025-04-07T21:43:20.465037Z",
            "url": "https://files.pythonhosted.org/packages/1f/75/924a93c051a94b53ac14e3a77d7a945ec69e163eb24f7f3437bf374f6ebb/bodo-2025.4-cp312-cp312-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-04-07 21:42:43",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bodo-ai",
    "github_project": "Bodo",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "bodo"
}
        
Elapsed time: 1.56714s