bosskamagic


Namebosskamagic JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/yourusername/bosskamagic
SummaryAI algorithms collection: Genetic algorithms for 8-Queens and TSP, plus propositional logic and Bayes theorem implementations
upload_time2025-08-19 12:46:56
maintainerNone
docs_urlNone
authorYour Name
requires_python>=3.7
licenseNone
keywords genetic-algorithm artificial-intelligence 8-queens tsp traveling-salesman propositional-logic bayes-theorem machine-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # BossKaMagic

A comprehensive Python package containing AI algorithm implementations including genetic algorithms, propositional logic solvers, and Bayes theorem applications.

## Features

### 🧬 Genetic Algorithms
- **8-Queens Problem Solver**: Genetic algorithm implementation to solve the classic 8-Queens puzzle
- **Traveling Salesman Problem (TSP)**: Genetic algorithm for finding optimal routes

### 🧠 Logic & Probability
- **Propositional Logic**: Complete logical operators (AND, OR, NOT, IMPLIES, BICONDITIONAL) with truth tables
- **Logic Solver**: Truth table generation, resolution theorem proving, and DPLL satisfiability checking
- **Bayes Theorem**: Conditional probability calculations and medical diagnosis examples
- **Naive Bayes Classifier**: Simple implementation for classification tasks

## Installation

```bash
pip install bosskamagic
```

## Quick Start

### Genetic Algorithm - 8 Queens

```python
from bosskamagic.eight_queens_genetic import SimpleQueensGA

# Solve 8-Queens problem
solver = SimpleQueensGA()
solution = solver.solve()
print(f"Solution found: {solution}")
```

### Genetic Algorithm - TSP

```python
from bosskamagic.tsp_genetic import City, SimpleTSPGA

# Create cities
cities = [
    City("A", 0, 0),
    City("B", 1, 2),
    City("C", 3, 1),
    City("D", 2, 3)
]

# Solve TSP
tsp_solver = SimpleTSPGA(cities)
best_tour, best_distance = tsp_solver.solve()
print(f"Best distance: {best_distance}")
```

### Logical Operators

```python
from bosskamagic.logic_and_bayes import LogicalOperators

# Use logical operators
result = LogicalOperators.AND(True, False)
print(f"True AND False = {result}")

# Print truth tables
LogicalOperators.print_truth_table_basic()
```

### Bayes Theorem

```python
from bosskamagic.logic_and_bayes import BayesTheorem

# Calculate conditional probability
prob = BayesTheorem.conditional_probability(0.8, 0.1, 0.05)
print(f"Posterior probability: {prob}")

# Run medical diagnosis example
BayesTheorem.medical_diagnosis_example()
```

## Modules

- `eight_queens_genetic`: Genetic algorithm for 8-Queens problem
- `tsp_genetic`: Genetic algorithm for Traveling Salesman Problem
- `logic_and_bayes`: Propositional logic and Bayes theorem implementations

## Requirements

- Python >= 3.7
- random2 >= 1.0.1

## License

MIT License

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## Author

Your Name - your.email@example.com

## Keywords

genetic-algorithm, artificial-intelligence, 8-queens, tsp, traveling-salesman, propositional-logic, bayes-theorem, machine-learning

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/yourusername/bosskamagic",
    "name": "bosskamagic",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "genetic-algorithm, artificial-intelligence, 8-queens, tsp, traveling-salesman, propositional-logic, bayes-theorem, machine-learning",
    "author": "Your Name",
    "author_email": "Your Name <your.email@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/7a/07/ea3067a60afd89d4e9ef6da89325d5b62c607ba81355a5abe57145099185/bosskamagic-0.1.0.tar.gz",
    "platform": null,
    "description": "# BossKaMagic\n\nA comprehensive Python package containing AI algorithm implementations including genetic algorithms, propositional logic solvers, and Bayes theorem applications.\n\n## Features\n\n### \ud83e\uddec Genetic Algorithms\n- **8-Queens Problem Solver**: Genetic algorithm implementation to solve the classic 8-Queens puzzle\n- **Traveling Salesman Problem (TSP)**: Genetic algorithm for finding optimal routes\n\n### \ud83e\udde0 Logic & Probability\n- **Propositional Logic**: Complete logical operators (AND, OR, NOT, IMPLIES, BICONDITIONAL) with truth tables\n- **Logic Solver**: Truth table generation, resolution theorem proving, and DPLL satisfiability checking\n- **Bayes Theorem**: Conditional probability calculations and medical diagnosis examples\n- **Naive Bayes Classifier**: Simple implementation for classification tasks\n\n## Installation\n\n```bash\npip install bosskamagic\n```\n\n## Quick Start\n\n### Genetic Algorithm - 8 Queens\n\n```python\nfrom bosskamagic.eight_queens_genetic import SimpleQueensGA\n\n# Solve 8-Queens problem\nsolver = SimpleQueensGA()\nsolution = solver.solve()\nprint(f\"Solution found: {solution}\")\n```\n\n### Genetic Algorithm - TSP\n\n```python\nfrom bosskamagic.tsp_genetic import City, SimpleTSPGA\n\n# Create cities\ncities = [\n    City(\"A\", 0, 0),\n    City(\"B\", 1, 2),\n    City(\"C\", 3, 1),\n    City(\"D\", 2, 3)\n]\n\n# Solve TSP\ntsp_solver = SimpleTSPGA(cities)\nbest_tour, best_distance = tsp_solver.solve()\nprint(f\"Best distance: {best_distance}\")\n```\n\n### Logical Operators\n\n```python\nfrom bosskamagic.logic_and_bayes import LogicalOperators\n\n# Use logical operators\nresult = LogicalOperators.AND(True, False)\nprint(f\"True AND False = {result}\")\n\n# Print truth tables\nLogicalOperators.print_truth_table_basic()\n```\n\n### Bayes Theorem\n\n```python\nfrom bosskamagic.logic_and_bayes import BayesTheorem\n\n# Calculate conditional probability\nprob = BayesTheorem.conditional_probability(0.8, 0.1, 0.05)\nprint(f\"Posterior probability: {prob}\")\n\n# Run medical diagnosis example\nBayesTheorem.medical_diagnosis_example()\n```\n\n## Modules\n\n- `eight_queens_genetic`: Genetic algorithm for 8-Queens problem\n- `tsp_genetic`: Genetic algorithm for Traveling Salesman Problem\n- `logic_and_bayes`: Propositional logic and Bayes theorem implementations\n\n## Requirements\n\n- Python >= 3.7\n- random2 >= 1.0.1\n\n## License\n\nMIT License\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## Author\n\nYour Name - your.email@example.com\n\n## Keywords\n\ngenetic-algorithm, artificial-intelligence, 8-queens, tsp, traveling-salesman, propositional-logic, bayes-theorem, machine-learning\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "AI algorithms collection: Genetic algorithms for 8-Queens and TSP, plus propositional logic and Bayes theorem implementations",
    "version": "0.1.0",
    "project_urls": {
        "Bug Reports": "https://github.com/yourusername/bosskamagic/issues",
        "Homepage": "https://github.com/yourusername/bosskamagic",
        "Source": "https://github.com/yourusername/bosskamagic"
    },
    "split_keywords": [
        "genetic-algorithm",
        " artificial-intelligence",
        " 8-queens",
        " tsp",
        " traveling-salesman",
        " propositional-logic",
        " bayes-theorem",
        " machine-learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5aa5850d3fa2c55f652257d8737ab89fed3ee626a5d3c3ddc32e1865ea026a8a",
                "md5": "dea260ecbda59eab6cc526b61a1f29e1",
                "sha256": "832a6e083777c6b679c5627c353e58d814a92130e46b3b020149c7a9102f7708"
            },
            "downloads": -1,
            "filename": "bosskamagic-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dea260ecbda59eab6cc526b61a1f29e1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 12224,
            "upload_time": "2025-08-19T12:46:55",
            "upload_time_iso_8601": "2025-08-19T12:46:55.088275Z",
            "url": "https://files.pythonhosted.org/packages/5a/a5/850d3fa2c55f652257d8737ab89fed3ee626a5d3c3ddc32e1865ea026a8a/bosskamagic-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7a07ea3067a60afd89d4e9ef6da89325d5b62c607ba81355a5abe57145099185",
                "md5": "3967fb4754d258d3ab780ba643ec7e36",
                "sha256": "638e62b2614a09a5861230a3981ed60046b57dd8b7ae7823cbfe957a44c96b69"
            },
            "downloads": -1,
            "filename": "bosskamagic-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "3967fb4754d258d3ab780ba643ec7e36",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 12428,
            "upload_time": "2025-08-19T12:46:56",
            "upload_time_iso_8601": "2025-08-19T12:46:56.312845Z",
            "url": "https://files.pythonhosted.org/packages/7a/07/ea3067a60afd89d4e9ef6da89325d5b62c607ba81355a5abe57145099185/bosskamagic-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-19 12:46:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "yourusername",
    "github_project": "bosskamagic",
    "github_not_found": true,
    "lcname": "bosskamagic"
}
        
Elapsed time: 0.90264s