brainsait-pybrain


Namebrainsait-pybrain JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryUnified Healthcare Intelligence Platform - AI-powered healthcare data harmonization and decision support
upload_time2025-08-02 17:15:57
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseApache-2.0
keywords healthcare ai fhir clinical-nlp medical-ai health-informatics interoperability decision-support federated-learning healthcare-analytics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ๐Ÿง  PyBrain - Unified Healthcare Intelligence Platform

[![Python](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![License](https://img.shields.io/badge/license-Apache%202.0-green.svg)](LICENSE)
[![PyPI](https://img.shields.io/pypi/v/pybrain.svg)](https://pypi.org/project/pybrain/)

PyBrain is the intelligence layer of the BrainSAIT Healthcare Unification Platform, providing AI-powered data harmonization, clinical NLP, and decision support for building next-generation healthcare systems.

## ๐Ÿš€ Features

- **AI-Powered Data Harmonization**: Automatically maps and transforms data across different healthcare standards
- **Clinical NLP Engine**: Extracts structured data from unstructured clinical notes with medical language understanding
- **Federated Learning Framework**: Enables privacy-preserving AI model training across healthcare institutions
- **Real-time Decision Support**: Provides evidence-based recommendations using ensemble AI models
- **Predictive Analytics**: Forecasts patient outcomes, resource needs, and population health trends

## ๐Ÿ“ฆ Installation

```bash
pip install pybrain
```

For development:
```bash
pip install pybrain[dev]
```

For all ML features:
```bash
pip install pybrain[ml,nlp]
```

## ๐Ÿ”ง Quick Start

### Basic Usage

```python
from pybrain import AIEngine, DataHarmonizer

# Initialize AI engine
ai = AIEngine()

# Extract entities from clinical text
clinical_note = "Patient presents with type 2 diabetes, prescribed metformin 500mg twice daily"
entities = ai.extract_clinical_entities(clinical_note)
print(entities)
# {'conditions': ['Diabetes'], 'medications': ['Metformin'], ...}

# Harmonize HL7v2 data to FHIR
harmonizer = DataHarmonizer()
hl7_data = {
    "PID": {
        "5": {"1": "Smith", "2": "John"},
        "7": "19800415",
        "8": "M"
    }
}
fhir_patient = harmonizer.harmonize_to_fhir(hl7_data, "hl7v2", "Patient")
```

### AI-Powered Risk Assessment

```python
from pybrain import AIEngine, DecisionEngine

ai = AIEngine()
decision_engine = DecisionEngine()

# Patient data
patient_data = {
    "age": 65,
    "conditions": ["diabetes", "hypertension"],
    "medications": ["metformin", "lisinopril"],
    "bmi": 28.5
}

# Predict clinical risks
risk_score = ai.predict_risk_score(patient_data)
print(f"Overall risk score: {risk_score:.2f}")

# Get clinical recommendations
recommendations = decision_engine.evaluate_patient(patient_data)
print("Clinical alerts:", recommendations["alerts"])
```

### Population Health Analytics

```python
from pybrain import AnalyticsEngine

analytics = AnalyticsEngine()

# Analyze population trends
population_data = [
    {"patient": {"id": "1", "birthDate": "1960-01-01"}, "observations": [...]},
    {"patient": {"id": "2", "birthDate": "1975-05-15"}, "observations": [...]}
]

metrics = analytics.calculate_population_metrics(population_data)
print(f"High-risk patients: {metrics['risk_distribution']['high']}")
print(f"Recommendations: {metrics['recommendations']}")
```

### CLI Usage

```bash
# Analyze clinical text
pybrain analyze -t "Patient has hypertension and diabetes"

# Harmonize data files
pybrain harmonize -i patient.json -f hl7v2 -r Patient -o patient_fhir.json

# Start API server
pybrain serve --port 8000
```

## ๐Ÿ—๏ธ Architecture

PyBrain is designed as a modular, scalable platform:

```
pybrain/
โ”œโ”€โ”€ core/
โ”‚   โ”œโ”€โ”€ ai/          # AI models and engines
โ”‚   โ”œโ”€โ”€ harmonizer/  # Data harmonization
โ”‚   โ”œโ”€โ”€ analytics/   # Analytics engine
โ”‚   โ”œโ”€โ”€ decision/    # Decision support
โ”‚   โ””โ”€โ”€ knowledge/   # Knowledge graphs
โ”œโ”€โ”€ connectors/      # External system connectors
โ”œโ”€โ”€ models/          # Pre-trained models
โ””โ”€โ”€ utils/          # Utilities
```

## ๐Ÿค Integration with PyHeart

PyBrain works seamlessly with PyHeart for complete healthcare system unification:

```python
from pybrain import AIEngine
from pyheart import FHIRClient

# Use PyHeart for data access
client = FHIRClient("https://fhir.example.com")
patient_data = client.get_patient("12345")

# Use PyBrain for intelligence
ai = AIEngine()
risk_score = ai.predict_risk_score(patient_data)

if risk_score > 0.8:
    print("High-risk patient - immediate intervention required")
```

## ๐Ÿงช Key Capabilities

### Clinical NLP
- Medical entity extraction
- Clinical concept normalization
- FHIR-compliant text processing
- Multi-language support

### AI-Powered Analytics
- Risk stratification
- Readmission prediction
- Fall risk assessment
- Medication adherence prediction

### Data Harmonization
- HL7v2 to FHIR transformation
- Custom EHR format mapping
- Terminology services integration
- Quality validation

### Decision Support
- Clinical rule engine
- Evidence-based recommendations
- Drug interaction checking
- Population health insights

## ๐Ÿ“š Documentation

Full documentation available at: https://pybrain.readthedocs.io

## ๐Ÿงช Testing

```bash
# Run tests
pytest

# With coverage
pytest --cov=pybrain
```

## ๐Ÿค Contributing

We welcome contributions! Please see our Contributing Guide for details.

## ๐Ÿ“„ License

PyBrain is licensed under the Apache License 2.0. See LICENSE for details.

## ๐ŸŒŸ Acknowledgments

Built with โค๏ธ by the BrainSAIT Healthcare Innovation Lab

Special thanks to the open-source healthcare community and all contributors.

---

**Together with PyHeart, PyBrain is building the future of intelligent healthcare.**

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "brainsait-pybrain",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "BrainSAIT Healthcare Innovation Lab <healthcare@brainsait.com>",
    "keywords": "healthcare, ai, fhir, clinical-nlp, medical-ai, health-informatics, interoperability, decision-support, federated-learning, healthcare-analytics",
    "author": null,
    "author_email": "\"Dr. Fadil\" <fadil@brainsait.com>, BrainSAIT Team <team@brainsait.com>",
    "download_url": "https://files.pythonhosted.org/packages/da/fc/42692e8a32207613212c0a818c83768779cac7693aaa1e10832df8f4c84c/brainsait_pybrain-0.1.0.tar.gz",
    "platform": null,
    "description": "# \ud83e\udde0 PyBrain - Unified Healthcare Intelligence Platform\n\n[![Python](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\n[![License](https://img.shields.io/badge/license-Apache%202.0-green.svg)](LICENSE)\n[![PyPI](https://img.shields.io/pypi/v/pybrain.svg)](https://pypi.org/project/pybrain/)\n\nPyBrain is the intelligence layer of the BrainSAIT Healthcare Unification Platform, providing AI-powered data harmonization, clinical NLP, and decision support for building next-generation healthcare systems.\n\n## \ud83d\ude80 Features\n\n- **AI-Powered Data Harmonization**: Automatically maps and transforms data across different healthcare standards\n- **Clinical NLP Engine**: Extracts structured data from unstructured clinical notes with medical language understanding\n- **Federated Learning Framework**: Enables privacy-preserving AI model training across healthcare institutions\n- **Real-time Decision Support**: Provides evidence-based recommendations using ensemble AI models\n- **Predictive Analytics**: Forecasts patient outcomes, resource needs, and population health trends\n\n## \ud83d\udce6 Installation\n\n```bash\npip install pybrain\n```\n\nFor development:\n```bash\npip install pybrain[dev]\n```\n\nFor all ML features:\n```bash\npip install pybrain[ml,nlp]\n```\n\n## \ud83d\udd27 Quick Start\n\n### Basic Usage\n\n```python\nfrom pybrain import AIEngine, DataHarmonizer\n\n# Initialize AI engine\nai = AIEngine()\n\n# Extract entities from clinical text\nclinical_note = \"Patient presents with type 2 diabetes, prescribed metformin 500mg twice daily\"\nentities = ai.extract_clinical_entities(clinical_note)\nprint(entities)\n# {'conditions': ['Diabetes'], 'medications': ['Metformin'], ...}\n\n# Harmonize HL7v2 data to FHIR\nharmonizer = DataHarmonizer()\nhl7_data = {\n    \"PID\": {\n        \"5\": {\"1\": \"Smith\", \"2\": \"John\"},\n        \"7\": \"19800415\",\n        \"8\": \"M\"\n    }\n}\nfhir_patient = harmonizer.harmonize_to_fhir(hl7_data, \"hl7v2\", \"Patient\")\n```\n\n### AI-Powered Risk Assessment\n\n```python\nfrom pybrain import AIEngine, DecisionEngine\n\nai = AIEngine()\ndecision_engine = DecisionEngine()\n\n# Patient data\npatient_data = {\n    \"age\": 65,\n    \"conditions\": [\"diabetes\", \"hypertension\"],\n    \"medications\": [\"metformin\", \"lisinopril\"],\n    \"bmi\": 28.5\n}\n\n# Predict clinical risks\nrisk_score = ai.predict_risk_score(patient_data)\nprint(f\"Overall risk score: {risk_score:.2f}\")\n\n# Get clinical recommendations\nrecommendations = decision_engine.evaluate_patient(patient_data)\nprint(\"Clinical alerts:\", recommendations[\"alerts\"])\n```\n\n### Population Health Analytics\n\n```python\nfrom pybrain import AnalyticsEngine\n\nanalytics = AnalyticsEngine()\n\n# Analyze population trends\npopulation_data = [\n    {\"patient\": {\"id\": \"1\", \"birthDate\": \"1960-01-01\"}, \"observations\": [...]},\n    {\"patient\": {\"id\": \"2\", \"birthDate\": \"1975-05-15\"}, \"observations\": [...]}\n]\n\nmetrics = analytics.calculate_population_metrics(population_data)\nprint(f\"High-risk patients: {metrics['risk_distribution']['high']}\")\nprint(f\"Recommendations: {metrics['recommendations']}\")\n```\n\n### CLI Usage\n\n```bash\n# Analyze clinical text\npybrain analyze -t \"Patient has hypertension and diabetes\"\n\n# Harmonize data files\npybrain harmonize -i patient.json -f hl7v2 -r Patient -o patient_fhir.json\n\n# Start API server\npybrain serve --port 8000\n```\n\n## \ud83c\udfd7\ufe0f Architecture\n\nPyBrain is designed as a modular, scalable platform:\n\n```\npybrain/\n\u251c\u2500\u2500 core/\n\u2502   \u251c\u2500\u2500 ai/          # AI models and engines\n\u2502   \u251c\u2500\u2500 harmonizer/  # Data harmonization\n\u2502   \u251c\u2500\u2500 analytics/   # Analytics engine\n\u2502   \u251c\u2500\u2500 decision/    # Decision support\n\u2502   \u2514\u2500\u2500 knowledge/   # Knowledge graphs\n\u251c\u2500\u2500 connectors/      # External system connectors\n\u251c\u2500\u2500 models/          # Pre-trained models\n\u2514\u2500\u2500 utils/          # Utilities\n```\n\n## \ud83e\udd1d Integration with PyHeart\n\nPyBrain works seamlessly with PyHeart for complete healthcare system unification:\n\n```python\nfrom pybrain import AIEngine\nfrom pyheart import FHIRClient\n\n# Use PyHeart for data access\nclient = FHIRClient(\"https://fhir.example.com\")\npatient_data = client.get_patient(\"12345\")\n\n# Use PyBrain for intelligence\nai = AIEngine()\nrisk_score = ai.predict_risk_score(patient_data)\n\nif risk_score > 0.8:\n    print(\"High-risk patient - immediate intervention required\")\n```\n\n## \ud83e\uddea Key Capabilities\n\n### Clinical NLP\n- Medical entity extraction\n- Clinical concept normalization\n- FHIR-compliant text processing\n- Multi-language support\n\n### AI-Powered Analytics\n- Risk stratification\n- Readmission prediction\n- Fall risk assessment\n- Medication adherence prediction\n\n### Data Harmonization\n- HL7v2 to FHIR transformation\n- Custom EHR format mapping\n- Terminology services integration\n- Quality validation\n\n### Decision Support\n- Clinical rule engine\n- Evidence-based recommendations\n- Drug interaction checking\n- Population health insights\n\n## \ud83d\udcda Documentation\n\nFull documentation available at: https://pybrain.readthedocs.io\n\n## \ud83e\uddea Testing\n\n```bash\n# Run tests\npytest\n\n# With coverage\npytest --cov=pybrain\n```\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Please see our Contributing Guide for details.\n\n## \ud83d\udcc4 License\n\nPyBrain is licensed under the Apache License 2.0. See LICENSE for details.\n\n## \ud83c\udf1f Acknowledgments\n\nBuilt with \u2764\ufe0f by the BrainSAIT Healthcare Innovation Lab\n\nSpecial thanks to the open-source healthcare community and all contributors.\n\n---\n\n**Together with PyHeart, PyBrain is building the future of intelligent healthcare.**\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Unified Healthcare Intelligence Platform - AI-powered healthcare data harmonization and decision support",
    "version": "0.1.0",
    "project_urls": {
        "Changelog": "https://github.com/brainsait/pybrain/blob/main/CHANGELOG.md",
        "Documentation": "https://pybrain.readthedocs.io",
        "Homepage": "https://github.com/brainsait/pybrain",
        "Issues": "https://github.com/brainsait/pybrain/issues",
        "Repository": "https://github.com/brainsait/pybrain"
    },
    "split_keywords": [
        "healthcare",
        " ai",
        " fhir",
        " clinical-nlp",
        " medical-ai",
        " health-informatics",
        " interoperability",
        " decision-support",
        " federated-learning",
        " healthcare-analytics"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f82c1f5e811de632eb02be64816be9f5aff34756da36583683336dae27815d67",
                "md5": "05af8f3c2d5f1ad2ce1f01aec7ebcfad",
                "sha256": "15b7f2e3f8a55935d96812f1d13ded1a1aa022e12846091f9596c565e31c5c5e"
            },
            "downloads": -1,
            "filename": "brainsait_pybrain-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "05af8f3c2d5f1ad2ce1f01aec7ebcfad",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 23911,
            "upload_time": "2025-08-02T17:15:56",
            "upload_time_iso_8601": "2025-08-02T17:15:56.214193Z",
            "url": "https://files.pythonhosted.org/packages/f8/2c/1f5e811de632eb02be64816be9f5aff34756da36583683336dae27815d67/brainsait_pybrain-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "dafc42692e8a32207613212c0a818c83768779cac7693aaa1e10832df8f4c84c",
                "md5": "5cba31c15960188b300cedfe5defcf73",
                "sha256": "010ac8796c2055504d215d217317296bd248355597742556a9bdffdaa02a9cf2"
            },
            "downloads": -1,
            "filename": "brainsait_pybrain-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5cba31c15960188b300cedfe5defcf73",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 22605,
            "upload_time": "2025-08-02T17:15:57",
            "upload_time_iso_8601": "2025-08-02T17:15:57.645433Z",
            "url": "https://files.pythonhosted.org/packages/da/fc/42692e8a32207613212c0a818c83768779cac7693aaa1e10832df8f4c84c/brainsait_pybrain-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-02 17:15:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "brainsait",
    "github_project": "pybrain",
    "github_not_found": true,
    "lcname": "brainsait-pybrain"
}
        
Elapsed time: 0.89650s