[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# BRAVE or Swarms of Vision Transformers
Implementation of the paper: "BRAVE : Broadening the visual encoding of vision-language models". BRAVE achieves state-of-the-art performance on a broad range of captioning and VQA benchmarks and significantly reduces the aforementioned issues of VLMs, while requiring a smaller number of trainable parameters than existing methods and having a more compressed representation.
## install
`pip3 install brave-torch`
## usage
###
```python
import torch
from brave_torch.main import SwarmOfViTs
# IMG Tensor
x = torch.randn(1, 3, 224, 224)
# Model
model = SwarmOfViTs(
image_size=224,
patch_size=32,
encoder_dim=512,
encoder_depth=6,
encoder_heads=8,
num_of_vits=4
)
# Forward
out = model(x)
print(out)
```
# Citations
## Todo
- [ ] Citation link
- [ ] Citation Bibtex
- [ ] Diagram photo
- [ ] Implement Andromeda Base LLM architecture
- [ ] Provide multi-modal tokenizer
- [ ] Train and release the model
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/BRAVE-ViT-Swarm",
"name": "brave-torch",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering, swarms, agents",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/bb/12/8b9ebe67ad9f7c4d74e31638e2fcbd5eb65f95c35c77a41bf3c42208dcb1/brave_torch-4.7.9.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# BRAVE or Swarms of Vision Transformers\nImplementation of the paper: \"BRAVE : Broadening the visual encoding of vision-language models\". BRAVE achieves state-of-the-art performance on a broad range of captioning and VQA benchmarks and significantly reduces the aforementioned issues of VLMs, while requiring a smaller number of trainable parameters than existing methods and having a more compressed representation.\n\n## install\n`pip3 install brave-torch`\n\n\n## usage\n\n### \n```python\nimport torch\nfrom brave_torch.main import SwarmOfViTs\n\n# IMG Tensor\nx = torch.randn(1, 3, 224, 224) \n\n# Model\nmodel = SwarmOfViTs(\n image_size=224,\n patch_size=32,\n encoder_dim=512,\n encoder_depth=6,\n encoder_heads=8,\n num_of_vits=4\n)\n\n# Forward\nout = model(x)\nprint(out)\n```\n\n# Citations\n\n## Todo\n- [ ] Citation link\n- [ ] Citation Bibtex\n- [ ] Diagram photo\n- [ ] Implement Andromeda Base LLM architecture\n- [ ] Provide multi-modal tokenizer\n- [ ] Train and release the model ",
"bugtrack_url": null,
"license": "MIT",
"summary": "Swarms - Pytorch",
"version": "4.7.9",
"project_urls": {
"Documentation": "https://swarms.apac.ai",
"Homepage": "https://github.com/kyegomez/BRAVE-ViT-Swarm",
"Repository": "https://github.com/kyegomez/BRAVE-ViT-Swarm"
},
"split_keywords": [
"artificial intelligence",
" deep learning",
" optimizers",
" prompt engineering",
" swarms",
" agents"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "eb7fe260d2829f894d9a9ab35c77dd76606566f9fc836a329393d3d0e3c3cba4",
"md5": "74dc100e1d8e5ffd8ef63f25b7c07cca",
"sha256": "1ecd965fe9ef4ae554a31075cde450dc3f342bc29b44f0d4d4b591f388db7c83"
},
"downloads": -1,
"filename": "brave_torch-4.7.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "74dc100e1d8e5ffd8ef63f25b7c07cca",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.9",
"size": 6556,
"upload_time": "2024-04-13T03:31:06",
"upload_time_iso_8601": "2024-04-13T03:31:06.608626Z",
"url": "https://files.pythonhosted.org/packages/eb/7f/e260d2829f894d9a9ab35c77dd76606566f9fc836a329393d3d0e3c3cba4/brave_torch-4.7.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "bb128b9ebe67ad9f7c4d74e31638e2fcbd5eb65f95c35c77a41bf3c42208dcb1",
"md5": "f751266589f3c7e95a4c55a9a59bfab1",
"sha256": "ad2f4b63ef35520a08e8968016cc6b8870c3173b2008ba8a2655760ea0b310e6"
},
"downloads": -1,
"filename": "brave_torch-4.7.9.tar.gz",
"has_sig": false,
"md5_digest": "f751266589f3c7e95a4c55a9a59bfab1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.9",
"size": 6169,
"upload_time": "2024-04-13T03:31:07",
"upload_time_iso_8601": "2024-04-13T03:31:07.775752Z",
"url": "https://files.pythonhosted.org/packages/bb/12/8b9ebe67ad9f7c4d74e31638e2fcbd5eb65f95c35c77a41bf3c42208dcb1/brave_torch-4.7.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-13 03:31:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "BRAVE-ViT-Swarm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "brave-torch"
}