buildml


Namebuildml JSON
Version 1.0.9 PyPI version JSON
download
home_page
SummaryLet's make building machine learning models the complex way, easy.
upload_time2024-01-27 08:06:46
maintainer
docs_urlNone
authorTechLeo (Onyiriuba Leonard Chukwubuikem)
requires_python>=3.0
licenseMIT
keywords machine learning data science data preprocessing supervised learning data exploration ml framework data cleaning regression classification machine learning toolkit
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Downloads](https://static.pepy.tech/badge/buildml)](https://pepy.tech/project/buildml)

# BuildML

BuildML is a Python machine-learning library designed to simplify the process of data preparation, feature engineering, model building, and evaluation. It provides a collection of tools for both classification and regression tasks, as well as functionalities for data exploration and manipulation. BuildML is a distribution of the [TechLeo](https://www.linkedin.com/company/techleo/) community to make complex machine-learning processes, easy.

## Author

**TechLeo**

- **Email:** techleo.ng@outlook.com
- **GitHub:** [TechLeo GitHub](https://github.com/TechLeoo)
- **LinkedIn:** [TechLeo LinkedIn](https://www.linkedin.com/company/techleo/)

## Contact

For inquiries, suggestions, or feedback, please feel free to reach out to the author:

- **Team Lead:** [Onyiriuba Leonard](https://www.linkedin.com/in/chukwubuikem-leonard-onyiriuba/)
- **Personal Email:** workwithtechleo@gmail.com
- **Company Email:** techleo.ng@outlook.com
- **GitHub Issues:** [BuildML Issues](https://github.com/TechLeo-Libraries/BuildML/issues)
- **LinkedIn Messages:** [TechLeo LinkedIn](https://www.linkedin.com/company/techleo/)

Your feedback is valuable and contributes to the continuous improvement of BuildML. The author welcomes collaboration and looks forward to hearing from the users of MLwiz.


## Features
Features from the current release.

### Data Loading and Handling
- `get_dataset`: Load a dataset.
- `get_training_test_data`: Split the dataset into training and test sets.
- `load_large_dataset`: Load a large dataset efficiently.
- `reduce_data_memory_useage`: Reduce memory usage of the dataset.

### Data Cleaning and Manipulation
- `drop_columns`: Drop specified columns from the dataset.
- `fix_missing_values`: Handle missing values in the dataset.
- `fix_unbalanced_dataset`: Address class imbalance in a classification dataset.
- `filter_data`: Filter data based on specified conditions.
- `remove_duplicates`: Remove duplicate rows from the dataset.
- `rename_columns`: Rename columns in the dataset.
- `replace_values`: Replace specified values in the dataset.
- `reset_index`: Reset the index of the dataset.
- `set_index`: Set a specific column as the index.
- `sort_index`: Sort the index of the dataset.
- `sort_values`: Sort the values of the dataset.

### Data Formatting and Transformation
- `categorical_to_datetime`: Convert categorical columns to datetime format.
- `categorical_to_numerical`: Convert categorical columns to numerical format.
- `numerical_to_categorical`: Convert numerical columns to categorical format.
- `column_binning`: Bin values in a column into specified bins.

### Exploratory Data Analysis
- `eda`: Perform exploratory data analysis on the dataset.
- `eda_visual`: Visualize exploratory data analysis results.
- `pandas_profiling`: Generate a Pandas Profiling report for the dataset.
- `sweetviz_profile_report`: Generate a Sweetviz Profile Report for the dataset.
- `count_column_categories`: Count the categories in a categorical column.
- `unique_elements_in_columns`: Get the unique elements that exist in each column in the dataset.

### Feature Engineering
- `extract_date_features`: Extract date-related features from a datetime column.
- `polyreg_x`: Get the polynomial regression x for independent variables after specifying the degree.
- `select_features`: Select relevant features for modeling.
- `select_dependent_and_independent`: Select dependent and independent variables.

### Data Preprocessing
- `scale_independent_variables`: Scale independent variables in the dataset.
- `remove_outlier`: Remove outliers from the dataset.
- `split_data`: Split the dataset into training and test sets.

### Model Building and Evaluation
- `poly_get_optimal_degree`: Find the best degree for polynomial regression.
- `get_bestK_KNNregressor`: Find the best K value for KNN regression.
- `train_model_regressor`: Train a regression model.
- `regressor_predict`: Make predictions using a regression model.
- `regressor_evaluation`: Evaluate the performance of a regression model.
- `regressor_model_testing`: Test a regression model.
- `polyreg_graph`: Visualize a polynomial regression graph.
- `simple_linregres_graph`: Visualize a regression graph.
- `build_multiple_regressors`: Build multiple regression models.
- `build_multiple_regressors_from_features`: Build regression models using selected features.
- `build_single_regressor_from_features`: Build a single regression model using selected features.
- `get_bestK_KNNclassifier`: Find the best K value for KNN classification.
- `train_model_classifier`: Train a classification model.
- `classifier_predict`: Make predictions using a classification model.
- `classifier_evaluation`: Evaluate the performance of a classification model.
- `classifier_model_testing`: Test a classification model.
- `classifier_graph`: Visualize a classification graph.
- `build_multiple_classifiers`: Build multiple classification models.
- `build_multiple_classifiers_from_features`: Build classification models using selected features.
- `build_single_classifier_from_features`: Build a single classification model using selected features.

### Data Aggregation and Summarization
- `group_data`: Group and summarize data based on specified conditions.

### Data Type Handling
- `select_datatype`: Select columns of a specific datatype in the dataset.

## Installation

You can install BuildML using pip:

```bash
pip install buildml
```

## Example Usage
Example 1
```bash
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, DecisionTreeClassifier
from sklearn.snm import SVC
from buildml import SupervisedLearning


dataset = pd.read_csv("Your_file_path")  # Load your dataset(e.g Pandas DataFrame)
data = SupervisedLearning(dataset)

# Exploratory Data Analysis
eda = data.eda()
eda_visual = data.eda_visual()

# Build and Evaluate Classifier
classifiers = [
    "LogisticRegression(random_state = 0)", 
    "RandomForestClassifier(random_state = 0)", 
    "DecisionTreeClassifier(random_state = 0)", 
    "SVC()"
    ]
    
build_model = data.build_multiple_classifiers(classifiers, 
                                          kfold=5, 
                                          cross_validation=True, 
                                          graph=True, 
                                          length=8, 
                                          width=12)
```

Example 2: Working on a dataset with train and test data given.
```bash
# Import Libraries
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
from buildml import SupervisedLearning

# Get Dataset
training_data = pd.read_csv("train.csv")
test_data = pd.read_csv("test.csv")

dataset = pd.concat([training_data, test_data], axis = 0)

# BuildML on Dataset
automate_training = SupervisedLearning(training_data)
automate_test = SupervisedLearning(test_data)

automate = [automate_training, automate_test]

# Exploratory Data Analysis
training_eda = automate_training.eda()
test_eda = automate_test.eda()

# Data Cleaning and Transformation 
training_eda_visual = automate_training.eda_visual(y = "Specify what you are predicting", figsize_barchart = (55, 10), figsize_heatmap = (15, 10), figsize_histogram=(35, 20))

for data in automate:
    data.reduce_data_memory_useage()
    data.drop_columns("Drop irrelevant columns")
    data.categorical_to_numerical() # If your data has categorical features

select_variables = automate_training.select_dependent_and_independent(predict = "Loan Status")

# Further Data Preparation and Segregation
training_data_clean = automate_training.get_dataset()
test_data_clean = automate_test.get_dataset()

unbalanced_dataset_check = automate_training.count_column_categories(column = "Specify what you are predicting")
split_data = automate_training.split_data()
fix_unbalanced_data = automate_training.fix_unbalanced_dataset(sampler = "RandomOverSampler", random_state = 0)

check_unbalanced_data_fix = automate_training.count_column_categories(column = "Specify what you are predicting", test_data = True)

# Model Building 
classifiers = [LogisticRegression(random_state = 0),
                SVC(),
                RandomForestClassifier(random_state = 0),
                DecisionTreeClassifier(random_state = 0),
                XGBClassifier(random_state = 0)
                ]

build_model = automate_training.build_multiple_classifiers(classifiers = classifiers,
                                                            kfold = 10,
                                                            cross_validation = True,
                                                            graph = True
                                                            )
```

## Acknowledgments
BuildML relies on several open-source libraries to provide its functionality. We would like to express our gratitude to the developers and contributors of the following libraries:

- [NumPy](https://numpy.org/)
- [Pandas](https://pandas.pydata.org/)
- [Matplotlib](https://matplotlib.org/)
- [Seaborn](https://seaborn.pydata.org/)
- [yData Profiling](https://github.com/ydataai/ydata-profiling)
- [Sweetviz](https://github.com/fbdesignpro/sweetviz)
- [Imbalanced-Learn (imblearn)](https://imbalanced-learn.org/)
- [Scikit-learn](https://scikit-learn.org/)
- [Warnings](https://docs.python.org/3/library/warnings.html)
- [Datatable](https://datatable.readthedocs.io/en/latest/)

The BuildML library builds upon the functionality provided by these excellent tools, We sincerely thank the maintainers and contributors of these libraries for their valuable contributions to the open-source community.


## ❤️ Support [BuildML](https://github.com/TechLeo-Libraries/BuildML)

If you find BuildML helpful and would like to support its development, there are several ways you can contribute:

### ☕ Buy Me a Coffee

You can show your appreciation by [buying me a coffee](https://ko-fi.com/techleo#). Every little bit helps and goes directly towards keeping this project maintained and improving.

[![Buy Me a Coffee](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/techleo#)

### 🌟 Sponsorship

Consider becoming a sponsor to provide ongoing support. Sponsors receive special recognition and exclusive perks:

- 🎉 Exclusive updates on the latest features and developments.
- 🚀 Early access to pre-releases and beta versions.
- 📢 Special mention in the project documentation and README.

Become a sponsor by clicking on the "Sponsor" button on the [BuildML repository](https://github.com/TechLeo-Libraries/BuildML).

### 👩‍💻 Contribute

If you're a developer, you can contribute directly by:

- 🐛 Reporting bugs or suggesting improvements by opening [issues](https://github.com/TechLeo-Libraries/BuildML/issues).
- 🛠 Submitting pull requests to enhance the codebase.

No contribution is too small, and your involvement is highly appreciated!

Thank you for considering supporting BuildML! Your generosity keeps the project alive and thriving. 🚀


## License
BuildML is distributed under the MIT License. Feel free to use, modify, and distribute it according to the terms of the license.


## Changelog

### v1.0.0 (January 2024):

- First release

### v1.0.1 (January 2024):

- Removed boxplot graph from `eda_visual`.
- Added new parameters for `eda_visual`.
- Removed `user_guide` from SupervisedLearning parameter in documentation.
- Improved documentation.

### v1.0.2 (January 2024):

- Improved documentation.
- Fix for building all models without splitting the data.
- Updated `requirements.txt` file.
- Fixed dependency error in installation.

### v1.0.3 (January 2024):

- Allow the method `count_column_categories` to work for split_data.
- Improved documentation.

### v1.0.4 (January 2024):

- Improved documentation.

### v1.0.5 (January 2024):

- Improved documentation.
- Created external documentation for BuildML.

### v1.0.6 (January 2024):

- Fixed polynomial regression graph
- Updated documentation on build_single_regressor_from_features
- Updated documentation on build_single_classifier_from_features
- Imporved documentation for `polyreg_graph`
- Imporved documentation for `split_data`
- Added option to specify the test_size in `split_data` but default parameter remains 0.2
- Created method `poly_get_optimal_degree` to find the best degree for polynomial regression. 
- Updated `README.md` file.

### v1.0.7 (January 2024):

- Fixed `self.__polynomial_regression` not defined.
- Improved documentation for `build_single_classifier_from_features`.
- Improved documentation for `build_single_regressor_from_features`.
- Improved documentation for `build_multiple_classifier_from_features`.
- Improved documentation for `build_multiple_regressor_from_features`.

### v1.0.8 (January 2024):

- Fixed unstable release v1.0.7.

### v1.0.9 (January 2024):

- Fixed unstable release v1.0.8.


## Contributors
We'd like to express our gratitude to the following contributors who have influenced and supported BuildML:

- [Onyiriuba Leonard](https://www.linkedin.com/in/chukwubuikem-leonard-onyiriuba/): for overseeing the entire project development lifecycle.
- Role: Project Lead and Maintainer.
- Email: workwithtechleo@gmail.com.
<br>


- [The TechLeo Community](https://www.linkedin.com/company/techleo/): for allowing the use of this project as a way to explain, learn, test, understand, and make easy, the machine learning process. 
- Role: Testers.
- Email: techleo.ng@gmail.com.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "buildml",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.0",
    "maintainer_email": "",
    "keywords": "machine learning,data science,data preprocessing,supervised learning,data exploration,ML framework,data cleaning,regression,classification,machine learning toolkit",
    "author": "TechLeo (Onyiriuba Leonard Chukwubuikem)",
    "author_email": "<techleo.ng@outlook.com>",
    "download_url": "https://files.pythonhosted.org/packages/5f/6b/492b7f57b898f4c22218d18d4ac18277f24796b030217f472a30c36726d5/buildml-1.0.9.tar.gz",
    "platform": null,
    "description": "[![Downloads](https://static.pepy.tech/badge/buildml)](https://pepy.tech/project/buildml)\r\n\r\n# BuildML\r\n\r\nBuildML is a Python machine-learning library designed to simplify the process of data preparation, feature engineering, model building, and evaluation. It provides a collection of tools for both classification and regression tasks, as well as functionalities for data exploration and manipulation. BuildML is a distribution of the [TechLeo](https://www.linkedin.com/company/techleo/) community to make complex machine-learning processes, easy.\r\n\r\n## Author\r\n\r\n**TechLeo**\r\n\r\n- **Email:** techleo.ng@outlook.com\r\n- **GitHub:** [TechLeo GitHub](https://github.com/TechLeoo)\r\n- **LinkedIn:** [TechLeo LinkedIn](https://www.linkedin.com/company/techleo/)\r\n\r\n## Contact\r\n\r\nFor inquiries, suggestions, or feedback, please feel free to reach out to the author:\r\n\r\n- **Team Lead:** [Onyiriuba Leonard](https://www.linkedin.com/in/chukwubuikem-leonard-onyiriuba/)\r\n- **Personal Email:** workwithtechleo@gmail.com\r\n- **Company Email:** techleo.ng@outlook.com\r\n- **GitHub Issues:** [BuildML Issues](https://github.com/TechLeo-Libraries/BuildML/issues)\r\n- **LinkedIn Messages:** [TechLeo LinkedIn](https://www.linkedin.com/company/techleo/)\r\n\r\nYour feedback is valuable and contributes to the continuous improvement of BuildML. The author welcomes collaboration and looks forward to hearing from the users of MLwiz.\r\n\r\n\r\n## Features\r\nFeatures from the current release.\r\n\r\n### Data Loading and Handling\r\n- `get_dataset`: Load a dataset.\r\n- `get_training_test_data`: Split the dataset into training and test sets.\r\n- `load_large_dataset`: Load a large dataset efficiently.\r\n- `reduce_data_memory_useage`: Reduce memory usage of the dataset.\r\n\r\n### Data Cleaning and Manipulation\r\n- `drop_columns`: Drop specified columns from the dataset.\r\n- `fix_missing_values`: Handle missing values in the dataset.\r\n- `fix_unbalanced_dataset`: Address class imbalance in a classification dataset.\r\n- `filter_data`: Filter data based on specified conditions.\r\n- `remove_duplicates`: Remove duplicate rows from the dataset.\r\n- `rename_columns`: Rename columns in the dataset.\r\n- `replace_values`: Replace specified values in the dataset.\r\n- `reset_index`: Reset the index of the dataset.\r\n- `set_index`: Set a specific column as the index.\r\n- `sort_index`: Sort the index of the dataset.\r\n- `sort_values`: Sort the values of the dataset.\r\n\r\n### Data Formatting and Transformation\r\n- `categorical_to_datetime`: Convert categorical columns to datetime format.\r\n- `categorical_to_numerical`: Convert categorical columns to numerical format.\r\n- `numerical_to_categorical`: Convert numerical columns to categorical format.\r\n- `column_binning`: Bin values in a column into specified bins.\r\n\r\n### Exploratory Data Analysis\r\n- `eda`: Perform exploratory data analysis on the dataset.\r\n- `eda_visual`: Visualize exploratory data analysis results.\r\n- `pandas_profiling`: Generate a Pandas Profiling report for the dataset.\r\n- `sweetviz_profile_report`: Generate a Sweetviz Profile Report for the dataset.\r\n- `count_column_categories`: Count the categories in a categorical column.\r\n- `unique_elements_in_columns`: Get the unique elements that exist in each column in the dataset.\r\n\r\n### Feature Engineering\r\n- `extract_date_features`: Extract date-related features from a datetime column.\r\n- `polyreg_x`: Get the polynomial regression x for independent variables after specifying the degree.\r\n- `select_features`: Select relevant features for modeling.\r\n- `select_dependent_and_independent`: Select dependent and independent variables.\r\n\r\n### Data Preprocessing\r\n- `scale_independent_variables`: Scale independent variables in the dataset.\r\n- `remove_outlier`: Remove outliers from the dataset.\r\n- `split_data`: Split the dataset into training and test sets.\r\n\r\n### Model Building and Evaluation\r\n- `poly_get_optimal_degree`: Find the best degree for polynomial regression.\r\n- `get_bestK_KNNregressor`: Find the best K value for KNN regression.\r\n- `train_model_regressor`: Train a regression model.\r\n- `regressor_predict`: Make predictions using a regression model.\r\n- `regressor_evaluation`: Evaluate the performance of a regression model.\r\n- `regressor_model_testing`: Test a regression model.\r\n- `polyreg_graph`: Visualize a polynomial regression graph.\r\n- `simple_linregres_graph`: Visualize a regression graph.\r\n- `build_multiple_regressors`: Build multiple regression models.\r\n- `build_multiple_regressors_from_features`: Build regression models using selected features.\r\n- `build_single_regressor_from_features`: Build a single regression model using selected features.\r\n- `get_bestK_KNNclassifier`: Find the best K value for KNN classification.\r\n- `train_model_classifier`: Train a classification model.\r\n- `classifier_predict`: Make predictions using a classification model.\r\n- `classifier_evaluation`: Evaluate the performance of a classification model.\r\n- `classifier_model_testing`: Test a classification model.\r\n- `classifier_graph`: Visualize a classification graph.\r\n- `build_multiple_classifiers`: Build multiple classification models.\r\n- `build_multiple_classifiers_from_features`: Build classification models using selected features.\r\n- `build_single_classifier_from_features`: Build a single classification model using selected features.\r\n\r\n### Data Aggregation and Summarization\r\n- `group_data`: Group and summarize data based on specified conditions.\r\n\r\n### Data Type Handling\r\n- `select_datatype`: Select columns of a specific datatype in the dataset.\r\n\r\n## Installation\r\n\r\nYou can install BuildML using pip:\r\n\r\n```bash\r\npip install buildml\r\n```\r\n\r\n## Example Usage\r\nExample 1\r\n```bash\r\nimport numpy as np\r\nimport pandas as pd\r\nfrom sklearn.linear_model import LogisticRegression\r\nfrom sklearn.ensemble import RandomForestClassifier, DecisionTreeClassifier\r\nfrom sklearn.snm import SVC\r\nfrom buildml import SupervisedLearning\r\n\r\n\r\ndataset = pd.read_csv(\"Your_file_path\")  # Load your dataset(e.g Pandas DataFrame)\r\ndata = SupervisedLearning(dataset)\r\n\r\n# Exploratory Data Analysis\r\neda = data.eda()\r\neda_visual = data.eda_visual()\r\n\r\n# Build and Evaluate Classifier\r\nclassifiers = [\r\n    \"LogisticRegression(random_state = 0)\", \r\n    \"RandomForestClassifier(random_state = 0)\", \r\n    \"DecisionTreeClassifier(random_state = 0)\", \r\n    \"SVC()\"\r\n    ]\r\n    \r\nbuild_model = data.build_multiple_classifiers(classifiers, \r\n                                          kfold=5, \r\n                                          cross_validation=True, \r\n                                          graph=True, \r\n                                          length=8, \r\n                                          width=12)\r\n```\r\n\r\nExample 2: Working on a dataset with train and test data given.\r\n```bash\r\n# Import Libraries\r\nimport pandas as pd\r\nimport numpy as np\r\nfrom sklearn.linear_model import LogisticRegression\r\nfrom sklearn.svm import SVC\r\nfrom sklearn.ensemble import RandomForestClassifier\r\nfrom sklearn.tree import DecisionTreeClassifier\r\nfrom xgboost import XGBClassifier\r\nfrom buildml import SupervisedLearning\r\n\r\n# Get Dataset\r\ntraining_data = pd.read_csv(\"train.csv\")\r\ntest_data = pd.read_csv(\"test.csv\")\r\n\r\ndataset = pd.concat([training_data, test_data], axis = 0)\r\n\r\n# BuildML on Dataset\r\nautomate_training = SupervisedLearning(training_data)\r\nautomate_test = SupervisedLearning(test_data)\r\n\r\nautomate = [automate_training, automate_test]\r\n\r\n# Exploratory Data Analysis\r\ntraining_eda = automate_training.eda()\r\ntest_eda = automate_test.eda()\r\n\r\n# Data Cleaning and Transformation \r\ntraining_eda_visual = automate_training.eda_visual(y = \"Specify what you are predicting\", figsize_barchart = (55, 10), figsize_heatmap = (15, 10), figsize_histogram=(35, 20))\r\n\r\nfor data in automate:\r\n    data.reduce_data_memory_useage()\r\n    data.drop_columns(\"Drop irrelevant columns\")\r\n    data.categorical_to_numerical() # If your data has categorical features\r\n\r\nselect_variables = automate_training.select_dependent_and_independent(predict = \"Loan Status\")\r\n\r\n# Further Data Preparation and Segregation\r\ntraining_data_clean = automate_training.get_dataset()\r\ntest_data_clean = automate_test.get_dataset()\r\n\r\nunbalanced_dataset_check = automate_training.count_column_categories(column = \"Specify what you are predicting\")\r\nsplit_data = automate_training.split_data()\r\nfix_unbalanced_data = automate_training.fix_unbalanced_dataset(sampler = \"RandomOverSampler\", random_state = 0)\r\n\r\ncheck_unbalanced_data_fix = automate_training.count_column_categories(column = \"Specify what you are predicting\", test_data = True)\r\n\r\n# Model Building \r\nclassifiers = [LogisticRegression(random_state = 0),\r\n                SVC(),\r\n                RandomForestClassifier(random_state = 0),\r\n                DecisionTreeClassifier(random_state = 0),\r\n                XGBClassifier(random_state = 0)\r\n                ]\r\n\r\nbuild_model = automate_training.build_multiple_classifiers(classifiers = classifiers,\r\n                                                            kfold = 10,\r\n                                                            cross_validation = True,\r\n                                                            graph = True\r\n                                                            )\r\n```\r\n\r\n## Acknowledgments\r\nBuildML relies on several open-source libraries to provide its functionality. We would like to express our gratitude to the developers and contributors of the following libraries:\r\n\r\n- [NumPy](https://numpy.org/)\r\n- [Pandas](https://pandas.pydata.org/)\r\n- [Matplotlib](https://matplotlib.org/)\r\n- [Seaborn](https://seaborn.pydata.org/)\r\n- [yData Profiling](https://github.com/ydataai/ydata-profiling)\r\n- [Sweetviz](https://github.com/fbdesignpro/sweetviz)\r\n- [Imbalanced-Learn (imblearn)](https://imbalanced-learn.org/)\r\n- [Scikit-learn](https://scikit-learn.org/)\r\n- [Warnings](https://docs.python.org/3/library/warnings.html)\r\n- [Datatable](https://datatable.readthedocs.io/en/latest/)\r\n\r\nThe BuildML library builds upon the functionality provided by these excellent tools, We sincerely thank the maintainers and contributors of these libraries for their valuable contributions to the open-source community.\r\n\r\n\r\n## \u2764\ufe0f Support [BuildML](https://github.com/TechLeo-Libraries/BuildML)\r\n\r\nIf you find BuildML helpful and would like to support its development, there are several ways you can contribute:\r\n\r\n### \u2615 Buy Me a Coffee\r\n\r\nYou can show your appreciation by [buying me a coffee](https://ko-fi.com/techleo#). Every little bit helps and goes directly towards keeping this project maintained and improving.\r\n\r\n[![Buy Me a Coffee](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/techleo#)\r\n\r\n### \ud83c\udf1f Sponsorship\r\n\r\nConsider becoming a sponsor to provide ongoing support. Sponsors receive special recognition and exclusive perks:\r\n\r\n- \ud83c\udf89 Exclusive updates on the latest features and developments.\r\n- \ud83d\ude80 Early access to pre-releases and beta versions.\r\n- \ud83d\udce2 Special mention in the project documentation and README.\r\n\r\nBecome a sponsor by clicking on the \"Sponsor\" button on the [BuildML repository](https://github.com/TechLeo-Libraries/BuildML).\r\n\r\n### \ud83d\udc69\u200d\ud83d\udcbb Contribute\r\n\r\nIf you're a developer, you can contribute directly by:\r\n\r\n- \ud83d\udc1b Reporting bugs or suggesting improvements by opening [issues](https://github.com/TechLeo-Libraries/BuildML/issues).\r\n- \ud83d\udee0 Submitting pull requests to enhance the codebase.\r\n\r\nNo contribution is too small, and your involvement is highly appreciated!\r\n\r\nThank you for considering supporting BuildML! Your generosity keeps the project alive and thriving. \ud83d\ude80\r\n\r\n\r\n## License\r\nBuildML is distributed under the MIT License. Feel free to use, modify, and distribute it according to the terms of the license.\r\n\r\n\r\n## Changelog\r\n\r\n### v1.0.0 (January 2024):\r\n\r\n- First release\r\n\r\n### v1.0.1 (January 2024):\r\n\r\n- Removed boxplot graph from `eda_visual`.\r\n- Added new parameters for `eda_visual`.\r\n- Removed `user_guide` from SupervisedLearning parameter in documentation.\r\n- Improved documentation.\r\n\r\n### v1.0.2 (January 2024):\r\n\r\n- Improved documentation.\r\n- Fix for building all models without splitting the data.\r\n- Updated `requirements.txt` file.\r\n- Fixed dependency error in installation.\r\n\r\n### v1.0.3 (January 2024):\r\n\r\n- Allow the method `count_column_categories` to work for split_data.\r\n- Improved documentation.\r\n\r\n### v1.0.4 (January 2024):\r\n\r\n- Improved documentation.\r\n\r\n### v1.0.5 (January 2024):\r\n\r\n- Improved documentation.\r\n- Created external documentation for BuildML.\r\n\r\n### v1.0.6 (January 2024):\r\n\r\n- Fixed polynomial regression graph\r\n- Updated documentation on build_single_regressor_from_features\r\n- Updated documentation on build_single_classifier_from_features\r\n- Imporved documentation for `polyreg_graph`\r\n- Imporved documentation for `split_data`\r\n- Added option to specify the test_size in `split_data` but default parameter remains 0.2\r\n- Created method `poly_get_optimal_degree` to find the best degree for polynomial regression. \r\n- Updated `README.md` file.\r\n\r\n### v1.0.7 (January 2024):\r\n\r\n- Fixed `self.__polynomial_regression` not defined.\r\n- Improved documentation for `build_single_classifier_from_features`.\r\n- Improved documentation for `build_single_regressor_from_features`.\r\n- Improved documentation for `build_multiple_classifier_from_features`.\r\n- Improved documentation for `build_multiple_regressor_from_features`.\r\n\r\n### v1.0.8 (January 2024):\r\n\r\n- Fixed unstable release v1.0.7.\r\n\r\n### v1.0.9 (January 2024):\r\n\r\n- Fixed unstable release v1.0.8.\r\n\r\n\r\n## Contributors\r\nWe'd like to express our gratitude to the following contributors who have influenced and supported BuildML:\r\n\r\n- [Onyiriuba Leonard](https://www.linkedin.com/in/chukwubuikem-leonard-onyiriuba/): for overseeing the entire project development lifecycle.\r\n- Role: Project Lead and Maintainer.\r\n- Email: workwithtechleo@gmail.com.\r\n<br>\r\n\r\n\r\n- [The TechLeo Community](https://www.linkedin.com/company/techleo/): for allowing the use of this project as a way to explain, learn, test, understand, and make easy, the machine learning process. \r\n- Role: Testers.\r\n- Email: techleo.ng@gmail.com.\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Let's make building machine learning models the complex way, easy.",
    "version": "1.0.9",
    "project_urls": null,
    "split_keywords": [
        "machine learning",
        "data science",
        "data preprocessing",
        "supervised learning",
        "data exploration",
        "ml framework",
        "data cleaning",
        "regression",
        "classification",
        "machine learning toolkit"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f254e2176ea50c873b920fd761b421db9e2ebe42d8bc074c647a2705aea3a92a",
                "md5": "8e06d0bb0b1cf53396fbf5c90e1d72c5",
                "sha256": "26e97e5896a51e1d6325fd3ef4a17a4baaef35b167d919325b75e765a856b2c6"
            },
            "downloads": -1,
            "filename": "buildml-1.0.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8e06d0bb0b1cf53396fbf5c90e1d72c5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.0",
            "size": 144042,
            "upload_time": "2024-01-27T08:06:39",
            "upload_time_iso_8601": "2024-01-27T08:06:39.958135Z",
            "url": "https://files.pythonhosted.org/packages/f2/54/e2176ea50c873b920fd761b421db9e2ebe42d8bc074c647a2705aea3a92a/buildml-1.0.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5f6b492b7f57b898f4c22218d18d4ac18277f24796b030217f472a30c36726d5",
                "md5": "0f1da22fb24138872745f54026b32d80",
                "sha256": "92b95377d516ad844d3e1bf99bb8207934406143c784bd9fb4fde7f725bfa01b"
            },
            "downloads": -1,
            "filename": "buildml-1.0.9.tar.gz",
            "has_sig": false,
            "md5_digest": "0f1da22fb24138872745f54026b32d80",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.0",
            "size": 59053,
            "upload_time": "2024-01-27T08:06:46",
            "upload_time_iso_8601": "2024-01-27T08:06:46.973538Z",
            "url": "https://files.pythonhosted.org/packages/5f/6b/492b7f57b898f4c22218d18d4ac18277f24796b030217f472a30c36726d5/buildml-1.0.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-27 08:06:46",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "buildml"
}
        
Elapsed time: 2.50244s