Name | cai-causal-fairness JSON |
Version |
0.0.0
JSON |
| download |
home_page | |
Summary | Quantify the algorithmic fairness and fix potential unfairness of an ML model. |
upload_time | 2023-05-18 21:59:43 |
maintainer | |
docs_url | None |
author | causaLens |
requires_python | >=3.8,<4.0 |
license | |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# cai-causal-fairness: Causal Fairness
Raw data
{
"_id": null,
"home_page": "",
"name": "cai-causal-fairness",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8,<4.0",
"maintainer_email": "",
"keywords": "",
"author": "causaLens",
"author_email": "opensource@causalens.com",
"download_url": "https://files.pythonhosted.org/packages/48/30/395c03dc5288eb89b1b29ec2e74db47da9d9c114d129998db298d66c691b/cai_causal_fairness-0.0.0.tar.gz",
"platform": null,
"description": "# cai-causal-fairness: Causal Fairness\n",
"bugtrack_url": null,
"license": "",
"summary": "Quantify the algorithmic fairness and fix potential unfairness of an ML model.",
"version": "0.0.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9a90022a32949a91090a03a591612f5b2026880cd068f0af7686abc46fe18e49",
"md5": "2cd9825abb9c63459c6e8d52503cf1d8",
"sha256": "479c605bab45ca2678289c600c31d544e35531d96f285bada489e51418f838b1"
},
"downloads": -1,
"filename": "cai_causal_fairness-0.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2cd9825abb9c63459c6e8d52503cf1d8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8,<4.0",
"size": 1326,
"upload_time": "2023-05-18T21:59:41",
"upload_time_iso_8601": "2023-05-18T21:59:41.802495Z",
"url": "https://files.pythonhosted.org/packages/9a/90/022a32949a91090a03a591612f5b2026880cd068f0af7686abc46fe18e49/cai_causal_fairness-0.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4830395c03dc5288eb89b1b29ec2e74db47da9d9c114d129998db298d66c691b",
"md5": "82241a28b860f6c7b97f5cacf0ac954f",
"sha256": "a24d4a2f5000f430399366042e698354574148a37839a24ee9ecf1397f905d9d"
},
"downloads": -1,
"filename": "cai_causal_fairness-0.0.0.tar.gz",
"has_sig": false,
"md5_digest": "82241a28b860f6c7b97f5cacf0ac954f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8,<4.0",
"size": 1066,
"upload_time": "2023-05-18T21:59:43",
"upload_time_iso_8601": "2023-05-18T21:59:43.383822Z",
"url": "https://files.pythonhosted.org/packages/48/30/395c03dc5288eb89b1b29ec2e74db47da9d9c114d129998db298d66c691b/cai_causal_fairness-0.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-05-18 21:59:43",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "cai-causal-fairness"
}