carde


Namecarde JSON
Version 0.1.3 PyPI version JSON
download
home_pageNone
SummaryCarbide Detection Tool
upload_time2025-01-12 09:36:44
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseBSD-3-Clause
keywords image segmentation python scanning electron microscopy carbide detection
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Automated carbide detection (carde)

Tool to detect carbides in scanning electron micrographs of steel.

During the production and heat treatment of steel, carbides with a size ranging between 10 nm up to a few µm precipitate in the steel matrix. While the carbides contribute to the steels yield strength, the largest carbides can be responsible for crack initiation leading to brittle fracture. Thus, a detailed quantitative description of carbides (e.g. number density, size distribution etc.) in a steel is of great interest.
On a polished sample, carbides can be observed using a scanning electron microscope (SEM). In the present case, SEM micrographs of a reactor pressure vessel steel have been recorded, in which carbides can be recognized.

## Installation

Create and activate a virtual environment with venv

```
python -m venv .carde-venv
source .carde-venv/bin/activate
```

Install carde and all required dependencies
```
pip install carde
```

## Usage

Please refer to the example notebooks

* [process a folder of images](https://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/notebooks/process_image_folder.html)
* [how the segmentation works](https://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/notebooks/classic_ml_segmentation.html)


## Documentation

https://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "carde",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "image segmentation, python, scanning electron microscopy, carbide detection",
    "author": null,
    "author_email": "Till Korten <t.korten@hzdr.de>",
    "download_url": "https://files.pythonhosted.org/packages/43/99/6386d4aeaa82e972066bf4574de71f15dc21005e603ee61f5b0fce02328d/carde-0.1.3.tar.gz",
    "platform": null,
    "description": "# Automated carbide detection (carde)\n\nTool to detect carbides in scanning electron micrographs of steel.\n\nDuring the production and heat treatment of steel, carbides with a size ranging between 10 nm up to a few \u00b5m precipitate in the steel matrix. While the carbides contribute to the steels yield strength, the largest carbides can be responsible for crack initiation leading to brittle fracture. Thus, a detailed quantitative description of carbides (e.g. number density, size distribution etc.) in a steel is of great interest.\nOn a polished sample, carbides can be observed using a scanning electron microscope (SEM). In the present case, SEM micrographs of a reactor pressure vessel steel have been recorded, in which carbides can be recognized.\n\n## Installation\n\nCreate and activate a virtual environment with venv\n\n```\npython -m venv .carde-venv\nsource .carde-venv/bin/activate\n```\n\nInstall carde and all required dependencies\n```\npip install carde\n```\n\n## Usage\n\nPlease refer to the example notebooks\n\n* [process a folder of images](https://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/notebooks/process_image_folder.html)\n* [how the segmentation works](https://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/notebooks/classic_ml_segmentation.html)\n\n\n## Documentation\n\nhttps://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Carbide Detection Tool",
    "version": "0.1.3",
    "project_urls": null,
    "split_keywords": [
        "image segmentation",
        " python",
        " scanning electron microscopy",
        " carbide detection"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a716d950ec4e9f3ca8762a7a62b24b0f41aa097fee064f3fba8e4c7bc61f194d",
                "md5": "2f17c230327ab93976857bb88cb1332a",
                "sha256": "5313620be5f9f0a8849e64e454c6d2c2b472375e81406baaa08d5ffe32a04b0b"
            },
            "downloads": -1,
            "filename": "carde-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2f17c230327ab93976857bb88cb1332a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 8100,
            "upload_time": "2025-01-12T09:36:41",
            "upload_time_iso_8601": "2025-01-12T09:36:41.890939Z",
            "url": "https://files.pythonhosted.org/packages/a7/16/d950ec4e9f3ca8762a7a62b24b0f41aa097fee064f3fba8e4c7bc61f194d/carde-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "43996386d4aeaa82e972066bf4574de71f15dc21005e603ee61f5b0fce02328d",
                "md5": "a7e10153b2bf428d281485d958b2cca0",
                "sha256": "8fc92c12439a09aa73c093e66491a1cd26ad76898d142f7de9f723f1f72a21dd"
            },
            "downloads": -1,
            "filename": "carde-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "a7e10153b2bf428d281485d958b2cca0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 1144060,
            "upload_time": "2025-01-12T09:36:44",
            "upload_time_iso_8601": "2025-01-12T09:36:44.154051Z",
            "url": "https://files.pythonhosted.org/packages/43/99/6386d4aeaa82e972066bf4574de71f15dc21005e603ee61f5b0fce02328d/carde-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-12 09:36:44",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "carde"
}
        
Elapsed time: 2.04932s