# Automated carbide detection (carde)
Tool to detect carbides in scanning electron micrographs of steel.
During the production and heat treatment of steel, carbides with a size ranging between 10 nm up to a few µm precipitate in the steel matrix. While the carbides contribute to the steels yield strength, the largest carbides can be responsible for crack initiation leading to brittle fracture. Thus, a detailed quantitative description of carbides (e.g. number density, size distribution etc.) in a steel is of great interest.
On a polished sample, carbides can be observed using a scanning electron microscope (SEM). In the present case, SEM micrographs of a reactor pressure vessel steel have been recorded, in which carbides can be recognized.
## Installation
Create and activate a virtual environment with venv
```
python -m venv .carde-venv
source .carde-venv/bin/activate
```
Install carde and all required dependencies
```
pip install carde
```
## Usage
Please refer to the example notebooks
* [process a folder of images](https://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/notebooks/process_image_folder.html)
* [how the segmentation works](https://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/notebooks/classic_ml_segmentation.html)
## Documentation
https://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/
Raw data
{
"_id": null,
"home_page": null,
"name": "carde",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "image segmentation, python, scanning electron microscopy, carbide detection",
"author": null,
"author_email": "Till Korten <t.korten@hzdr.de>",
"download_url": "https://files.pythonhosted.org/packages/43/99/6386d4aeaa82e972066bf4574de71f15dc21005e603ee61f5b0fce02328d/carde-0.1.3.tar.gz",
"platform": null,
"description": "# Automated carbide detection (carde)\n\nTool to detect carbides in scanning electron micrographs of steel.\n\nDuring the production and heat treatment of steel, carbides with a size ranging between 10 nm up to a few \u00b5m precipitate in the steel matrix. While the carbides contribute to the steels yield strength, the largest carbides can be responsible for crack initiation leading to brittle fracture. Thus, a detailed quantitative description of carbides (e.g. number density, size distribution etc.) in a steel is of great interest.\nOn a polished sample, carbides can be observed using a scanning electron microscope (SEM). In the present case, SEM micrographs of a reactor pressure vessel steel have been recorded, in which carbides can be recognized.\n\n## Installation\n\nCreate and activate a virtual environment with venv\n\n```\npython -m venv .carde-venv\nsource .carde-venv/bin/activate\n```\n\nInstall carde and all required dependencies\n```\npip install carde\n```\n\n## Usage\n\nPlease refer to the example notebooks\n\n* [process a folder of images](https://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/notebooks/process_image_folder.html)\n* [how the segmentation works](https://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/notebooks/classic_ml_segmentation.html)\n\n\n## Documentation\n\nhttps://chekhonin-automatic-carbide-detection-haicu-vouc-1d7a37eb51de28.pages.hzdr.de/\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "Carbide Detection Tool",
"version": "0.1.3",
"project_urls": null,
"split_keywords": [
"image segmentation",
" python",
" scanning electron microscopy",
" carbide detection"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a716d950ec4e9f3ca8762a7a62b24b0f41aa097fee064f3fba8e4c7bc61f194d",
"md5": "2f17c230327ab93976857bb88cb1332a",
"sha256": "5313620be5f9f0a8849e64e454c6d2c2b472375e81406baaa08d5ffe32a04b0b"
},
"downloads": -1,
"filename": "carde-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2f17c230327ab93976857bb88cb1332a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 8100,
"upload_time": "2025-01-12T09:36:41",
"upload_time_iso_8601": "2025-01-12T09:36:41.890939Z",
"url": "https://files.pythonhosted.org/packages/a7/16/d950ec4e9f3ca8762a7a62b24b0f41aa097fee064f3fba8e4c7bc61f194d/carde-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "43996386d4aeaa82e972066bf4574de71f15dc21005e603ee61f5b0fce02328d",
"md5": "a7e10153b2bf428d281485d958b2cca0",
"sha256": "8fc92c12439a09aa73c093e66491a1cd26ad76898d142f7de9f723f1f72a21dd"
},
"downloads": -1,
"filename": "carde-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "a7e10153b2bf428d281485d958b2cca0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 1144060,
"upload_time": "2025-01-12T09:36:44",
"upload_time_iso_8601": "2025-01-12T09:36:44.154051Z",
"url": "https://files.pythonhosted.org/packages/43/99/6386d4aeaa82e972066bf4574de71f15dc21005e603ee61f5b0fce02328d/carde-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-12 09:36:44",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "carde"
}