# catnet
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.14031788.svg)](https://doi.org/10.5281/zenodo.14031788)
## What catnet does
`catnet` is a Python package that allows for transforming tabular data into a network structure. `catnet` can identify the coexistence of variables and categories in literature reviews and other tables and create a network dataframe that can be exported into a format that can be taken by other packages such as `networkx` and applications such as [Gephi](https://gephi.org/).
`catnet` is a Python package designed to facilitate the creation and analysis of category networks. Whether you’re working with literature review tables or other structured data, `catnet` empowers researchers and analysts to build insightful networks that reveal relationships and patterns within their categories. Streamline your data exploration and enhance your analytical capabilities with catnet!
## How to install catnet
To install this package run:
`python -m pip install git+https://github.com/CamiBetancur/catnet/)`
## Get started using catnet
To be able to use `catnet` you need to format your dataframe in one of the following ways:
### 1. **"Long" format**
"Long" format refers to data that has a column for describing a categorical variable (`var_col`) and an identifier column (`id_col`) that identifies to which entity that variable belongs to. For example, in a literature review, a long dataframe that could be used by catnet could look like this (note that the column names `id_col` and `var_col` do not necessarily need to be named `id_col` and `var_col`):
| id_col | var_col | other_data_cols |
| ------ | ------------------ | --------------- |
| doc_01 | Health | ... |
| doc_01 | Water access | ... |
| doc_01 | Water quality | ... |
| doc_02 | Health | ... |
| doc_02 | Energy generation | ... |
| ... | ... | ... |
Datasets in "long" format can be transformed into networks by using the `catnet.from_long_df()` function. For more information, you can look at the [Examples Jupyter Notebook](https://github.com/CamiBetancur/catnet/blob/main/Examples.ipynb) or the [Examples Markdown file](https://github.com/CamiBetancur/catnet/blob/main/Examples.md).
### 2. **"Same cell" format**
Dataframes in the "same cell" format contain a list of categories insid the same cell. The identifier colum (`id_col`) marks different documents/observations, while the categorical variable column (`var_col`) contains the lists of categories.
| id_col | var_col | other_data_cols |
| ------ | ------------------ | --------------- |
| doc_01 | Health; Water | ... |
| | access; Water | |
| | quality | |
| doc_02 | Health; Energy | ... |
| | generation | |
| ... | ... | ... |
Datasets in the "same cell" format can be transformed into networks by using the `catnet.from_same_cell()` function. For more information, you can look at the [Examples Jupyter Notebook](https://github.com/CamiBetancur/catnet/blob/main/Examples.ipynb) or the [Examples Markdown file](https://github.com/CamiBetancur/catnet/blob/main/Examples.md).
## How to cite catnet
### APA 7
>Betancur Jaramillo, J. C. (2024). _catnet source code (Version 0.1.0)_ [source code]. [https://github.com/CamiBetancur/catnet/](https://github.com/CamiBetancur/catnet/).
### BibTex
```
@misc{Betancur_2024,
title={catnet v0.1.0},
url={https://github.com/CamiBetancur/catnet},
publisher={Stockholm Environment Institute},
author={Betancur Jaramillo, Juan Camilo},
year={2024}}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/CamiBetancur/catnet",
"name": "catnet",
"maintainer": "Juan Camilo Betancur Jaramillo",
"docs_url": null,
"requires_python": "<4.0,>=3.12",
"maintainer_email": "juan.betancur@sei.org",
"keywords": "networks, literature review, categorical data",
"author": "Juan Camilo Betancur Jaramillo",
"author_email": "juan.betancur@sei.org",
"download_url": "https://files.pythonhosted.org/packages/3d/89/8752398b3ca9c77c86f90d0ff76c4e4888e57a8f2640a8903bbd3907bf8b/catnet-0.1.0.tar.gz",
"platform": null,
"description": "# catnet\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.14031788.svg)](https://doi.org/10.5281/zenodo.14031788)\n\n## What catnet does\n`catnet` is a Python package that allows for transforming tabular data into a network structure. `catnet` can identify the coexistence of variables and categories in literature reviews and other tables and create a network dataframe that can be exported into a format that can be taken by other packages such as `networkx` and applications such as [Gephi](https://gephi.org/).\n\n`catnet` is a Python package designed to facilitate the creation and analysis of category networks. Whether you\u2019re working with literature review tables or other structured data, `catnet` empowers researchers and analysts to build insightful networks that reveal relationships and patterns within their categories. Streamline your data exploration and enhance your analytical capabilities with catnet!\n\n## How to install catnet\nTo install this package run:\n\n`python -m pip install git+https://github.com/CamiBetancur/catnet/)`\n\n## Get started using catnet\n\nTo be able to use `catnet` you need to format your dataframe in one of the following ways:\n\n### 1. **\"Long\" format**\n\"Long\" format refers to data that has a column for describing a categorical variable (`var_col`) and an identifier column (`id_col`) that identifies to which entity that variable belongs to. For example, in a literature review, a long dataframe that could be used by catnet could look like this (note that the column names `id_col` and `var_col` do not necessarily need to be named `id_col` and `var_col`):\n\n| id_col | var_col | other_data_cols |\n| ------ | ------------------ | --------------- |\n| doc_01 | Health | ... |\n| doc_01 | Water access | ... |\n| doc_01 | Water quality | ... |\n| doc_02 | Health | ... |\n| doc_02 | Energy generation | ... |\n| ... | ... | ... |\n\nDatasets in \"long\" format can be transformed into networks by using the `catnet.from_long_df()` function. For more information, you can look at the [Examples Jupyter Notebook](https://github.com/CamiBetancur/catnet/blob/main/Examples.ipynb) or the [Examples Markdown file](https://github.com/CamiBetancur/catnet/blob/main/Examples.md).\n\n### 2. **\"Same cell\" format**\nDataframes in the \"same cell\" format contain a list of categories insid the same cell. The identifier colum (`id_col`) marks different documents/observations, while the categorical variable column (`var_col`) contains the lists of categories.\n\n| id_col | var_col | other_data_cols |\n| ------ | ------------------ | --------------- |\n| doc_01 | Health; Water | ... |\n| | access; Water | |\n| | quality | |\n| doc_02 | Health; Energy | ... |\n| | generation | |\n| ... | ... | ... |\n\nDatasets in the \"same cell\" format can be transformed into networks by using the `catnet.from_same_cell()` function. For more information, you can look at the [Examples Jupyter Notebook](https://github.com/CamiBetancur/catnet/blob/main/Examples.ipynb) or the [Examples Markdown file](https://github.com/CamiBetancur/catnet/blob/main/Examples.md).\n\n## How to cite catnet\n\n### APA 7\n\n>Betancur Jaramillo, J. C. (2024). _catnet source code (Version 0.1.0)_ [source code]. [https://github.com/CamiBetancur/catnet/](https://github.com/CamiBetancur/catnet/). \n\n### BibTex\n\n```\n@misc{Betancur_2024, \n title={catnet v0.1.0}, \n url={https://github.com/CamiBetancur/catnet}, \n publisher={Stockholm Environment Institute}, \n author={Betancur Jaramillo, Juan Camilo}, \n year={2024}} \n```",
"bugtrack_url": null,
"license": "GNU GPLv3",
"summary": "Create networks of categories from literature review and other tables",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/CamiBetancur/catnet",
"Repository": "https://github.com/CamiBetancur/catnet"
},
"split_keywords": [
"networks",
" literature review",
" categorical data"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f6c6c042aa184c6e1e0b862b1f543ed897ccc6c9a52d2adfeebea0cf0f2dd6e4",
"md5": "abeaf10a602d1a75b2dd576ed319fbc7",
"sha256": "3e37dbef6e16c24bca512177b7f6510104654767b2cfd792ba13341c14bbf0b4"
},
"downloads": -1,
"filename": "catnet-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "abeaf10a602d1a75b2dd576ed319fbc7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.12",
"size": 23137,
"upload_time": "2024-11-04T00:55:44",
"upload_time_iso_8601": "2024-11-04T00:55:44.406862Z",
"url": "https://files.pythonhosted.org/packages/f6/c6/c042aa184c6e1e0b862b1f543ed897ccc6c9a52d2adfeebea0cf0f2dd6e4/catnet-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3d898752398b3ca9c77c86f90d0ff76c4e4888e57a8f2640a8903bbd3907bf8b",
"md5": "ec15588a628b959c58fc592bf82dae73",
"sha256": "a3e4ffb32443267193518dd8296c1df572f002d52e1ef6d04e16b191c6d5b08f"
},
"downloads": -1,
"filename": "catnet-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "ec15588a628b959c58fc592bf82dae73",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.12",
"size": 21340,
"upload_time": "2024-11-04T00:55:45",
"upload_time_iso_8601": "2024-11-04T00:55:45.928728Z",
"url": "https://files.pythonhosted.org/packages/3d/89/8752398b3ca9c77c86f90d0ff76c4e4888e57a8f2640a8903bbd3907bf8b/catnet-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-04 00:55:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "CamiBetancur",
"github_project": "catnet",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "catnet"
}