catnet


Namecatnet JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/CamiBetancur/catnet
SummaryCreate networks of categories from literature review and other tables
upload_time2024-11-04 00:55:45
maintainerJuan Camilo Betancur Jaramillo
docs_urlNone
authorJuan Camilo Betancur Jaramillo
requires_python<4.0,>=3.12
licenseGNU GPLv3
keywords networks literature review categorical data
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # catnet
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.14031788.svg)](https://doi.org/10.5281/zenodo.14031788)

## What catnet does
`catnet` is a Python package that allows for transforming tabular data into a network structure. `catnet` can identify the coexistence of variables and categories in literature reviews and other tables and create a network dataframe that can be exported into a format that can be taken by other packages such as `networkx` and applications such as [Gephi](https://gephi.org/).

`catnet` is a Python package designed to facilitate the creation and analysis of category networks. Whether you’re working with literature review tables or other structured data, `catnet` empowers researchers and analysts to build insightful networks that reveal relationships and patterns within their categories. Streamline your data exploration and enhance your analytical capabilities with catnet!

## How to install catnet
To install this package run:

`python -m pip install git+https://github.com/CamiBetancur/catnet/)`

## Get started using catnet

To be able to use `catnet` you need to format your dataframe in one of the following ways:

### 1. **"Long" format**
"Long" format refers to data that has a column for describing a categorical variable (`var_col`) and an identifier column (`id_col`) that identifies to which entity that variable belongs to. For example, in a literature review, a long dataframe that could be used by catnet could look like this (note that the column names `id_col` and `var_col` do not necessarily need to be named `id_col` and `var_col`):

| id_col | var_col            | other_data_cols |
| ------ | ------------------ | --------------- |
| doc_01 | Health             | ...             |
| doc_01 | Water access       | ...             |
| doc_01 | Water quality      | ...             |
| doc_02 | Health             | ...             |
| doc_02 | Energy generation  | ...             |
|  ...   |   ...              | ...             |

Datasets in "long" format can be transformed into networks by using the `catnet.from_long_df()` function. For more information, you can look at the [Examples Jupyter Notebook](https://github.com/CamiBetancur/catnet/blob/main/Examples.ipynb) or the [Examples Markdown file](https://github.com/CamiBetancur/catnet/blob/main/Examples.md).

### 2. **"Same cell" format**
Dataframes in the "same cell" format contain a list of categories insid the same cell. The identifier colum (`id_col`) marks different documents/observations, while the categorical variable column (`var_col`) contains the lists of categories.

| id_col | var_col            | other_data_cols |
| ------ | ------------------ | --------------- |
| doc_01 | Health; Water      | ...             |
|        | access; Water      |                 |
|        | quality            |                 |
| doc_02 | Health; Energy     | ...             |
|        | generation         |                 |
|  ...   |   ...              | ...             |

Datasets in the "same cell" format can be transformed into networks by using the `catnet.from_same_cell()` function. For more information, you can look at the [Examples Jupyter Notebook](https://github.com/CamiBetancur/catnet/blob/main/Examples.ipynb) or the [Examples Markdown file](https://github.com/CamiBetancur/catnet/blob/main/Examples.md).

## How to cite catnet

### APA 7

>Betancur Jaramillo, J. C. (2024). _catnet source code (Version 0.1.0)_ [source code]. [https://github.com/CamiBetancur/catnet/](https://github.com/CamiBetancur/catnet/). 

### BibTex

```
@misc{Betancur_2024,  
      title={catnet v0.1.0},  
      url={https://github.com/CamiBetancur/catnet},  
      publisher={Stockholm Environment Institute},  
      author={Betancur Jaramillo, Juan Camilo},  
      year={2024}}  
```
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/CamiBetancur/catnet",
    "name": "catnet",
    "maintainer": "Juan Camilo Betancur Jaramillo",
    "docs_url": null,
    "requires_python": "<4.0,>=3.12",
    "maintainer_email": "juan.betancur@sei.org",
    "keywords": "networks, literature review, categorical data",
    "author": "Juan Camilo Betancur Jaramillo",
    "author_email": "juan.betancur@sei.org",
    "download_url": "https://files.pythonhosted.org/packages/3d/89/8752398b3ca9c77c86f90d0ff76c4e4888e57a8f2640a8903bbd3907bf8b/catnet-0.1.0.tar.gz",
    "platform": null,
    "description": "# catnet\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.14031788.svg)](https://doi.org/10.5281/zenodo.14031788)\n\n## What catnet does\n`catnet` is a Python package that allows for transforming tabular data into a network structure. `catnet` can identify the coexistence of variables and categories in literature reviews and other tables and create a network dataframe that can be exported into a format that can be taken by other packages such as `networkx` and applications such as [Gephi](https://gephi.org/).\n\n`catnet` is a Python package designed to facilitate the creation and analysis of category networks. Whether you\u2019re working with literature review tables or other structured data, `catnet` empowers researchers and analysts to build insightful networks that reveal relationships and patterns within their categories. Streamline your data exploration and enhance your analytical capabilities with catnet!\n\n## How to install catnet\nTo install this package run:\n\n`python -m pip install git+https://github.com/CamiBetancur/catnet/)`\n\n## Get started using catnet\n\nTo be able to use `catnet` you need to format your dataframe in one of the following ways:\n\n### 1. **\"Long\" format**\n\"Long\" format refers to data that has a column for describing a categorical variable (`var_col`) and an identifier column (`id_col`) that identifies to which entity that variable belongs to. For example, in a literature review, a long dataframe that could be used by catnet could look like this (note that the column names `id_col` and `var_col` do not necessarily need to be named `id_col` and `var_col`):\n\n| id_col | var_col            | other_data_cols |\n| ------ | ------------------ | --------------- |\n| doc_01 | Health             | ...             |\n| doc_01 | Water access       | ...             |\n| doc_01 | Water quality      | ...             |\n| doc_02 | Health             | ...             |\n| doc_02 | Energy generation  | ...             |\n|  ...   |   ...              | ...             |\n\nDatasets in \"long\" format can be transformed into networks by using the `catnet.from_long_df()` function. For more information, you can look at the [Examples Jupyter Notebook](https://github.com/CamiBetancur/catnet/blob/main/Examples.ipynb) or the [Examples Markdown file](https://github.com/CamiBetancur/catnet/blob/main/Examples.md).\n\n### 2. **\"Same cell\" format**\nDataframes in the \"same cell\" format contain a list of categories insid the same cell. The identifier colum (`id_col`) marks different documents/observations, while the categorical variable column (`var_col`) contains the lists of categories.\n\n| id_col | var_col            | other_data_cols |\n| ------ | ------------------ | --------------- |\n| doc_01 | Health; Water      | ...             |\n|        | access; Water      |                 |\n|        | quality            |                 |\n| doc_02 | Health; Energy     | ...             |\n|        | generation         |                 |\n|  ...   |   ...              | ...             |\n\nDatasets in the \"same cell\" format can be transformed into networks by using the `catnet.from_same_cell()` function. For more information, you can look at the [Examples Jupyter Notebook](https://github.com/CamiBetancur/catnet/blob/main/Examples.ipynb) or the [Examples Markdown file](https://github.com/CamiBetancur/catnet/blob/main/Examples.md).\n\n## How to cite catnet\n\n### APA 7\n\n>Betancur Jaramillo, J. C. (2024). _catnet source code (Version 0.1.0)_ [source code]. [https://github.com/CamiBetancur/catnet/](https://github.com/CamiBetancur/catnet/). \n\n### BibTex\n\n```\n@misc{Betancur_2024,  \n      title={catnet v0.1.0},  \n      url={https://github.com/CamiBetancur/catnet},  \n      publisher={Stockholm Environment Institute},  \n      author={Betancur Jaramillo, Juan Camilo},  \n      year={2024}}  \n```",
    "bugtrack_url": null,
    "license": "GNU GPLv3",
    "summary": "Create networks of categories from literature review and other tables",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/CamiBetancur/catnet",
        "Repository": "https://github.com/CamiBetancur/catnet"
    },
    "split_keywords": [
        "networks",
        " literature review",
        " categorical data"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f6c6c042aa184c6e1e0b862b1f543ed897ccc6c9a52d2adfeebea0cf0f2dd6e4",
                "md5": "abeaf10a602d1a75b2dd576ed319fbc7",
                "sha256": "3e37dbef6e16c24bca512177b7f6510104654767b2cfd792ba13341c14bbf0b4"
            },
            "downloads": -1,
            "filename": "catnet-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "abeaf10a602d1a75b2dd576ed319fbc7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.12",
            "size": 23137,
            "upload_time": "2024-11-04T00:55:44",
            "upload_time_iso_8601": "2024-11-04T00:55:44.406862Z",
            "url": "https://files.pythonhosted.org/packages/f6/c6/c042aa184c6e1e0b862b1f543ed897ccc6c9a52d2adfeebea0cf0f2dd6e4/catnet-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3d898752398b3ca9c77c86f90d0ff76c4e4888e57a8f2640a8903bbd3907bf8b",
                "md5": "ec15588a628b959c58fc592bf82dae73",
                "sha256": "a3e4ffb32443267193518dd8296c1df572f002d52e1ef6d04e16b191c6d5b08f"
            },
            "downloads": -1,
            "filename": "catnet-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "ec15588a628b959c58fc592bf82dae73",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.12",
            "size": 21340,
            "upload_time": "2024-11-04T00:55:45",
            "upload_time_iso_8601": "2024-11-04T00:55:45.928728Z",
            "url": "https://files.pythonhosted.org/packages/3d/89/8752398b3ca9c77c86f90d0ff76c4e4888e57a8f2640a8903bbd3907bf8b/catnet-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-04 00:55:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "CamiBetancur",
    "github_project": "catnet",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "catnet"
}
        
Elapsed time: 0.38216s