Name | cca-zoo JSON |
Version |
2.6.0
JSON |
| download |
home_page | https://github.com/jameschapman19/cca_zoo |
Summary | Canonical Correlation Analysis Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic methods in a scikit-learn style framework |
upload_time | 2024-04-19 10:57:42 |
maintainer | None |
docs_url | None |
author | jameschapman |
requires_python | <4.0.0,>=3.8 |
license | MIT |
keywords |
cca
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<div align="center">
<img src="docs/logos/cca-zoo-logo.svg" alt="drawing" width="200"/>
# CCA-Zoo
**Unlock the hidden relationships in multiview data.**
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5748062.svg)](https://doi.org/10.5281/zenodo.4382739)
[![codecov](https://codecov.io/gh/jameschapman19/cca_zoo/branch/main/graph/badge.svg?token=JHG9VUB0L8)](https://codecov.io/gh/jameschapman19/cca_zoo)
![Build Status](https://github.com/jameschapman19/cca_zoo/actions/workflows/changes.yml/badge.svg)
[![Documentation Status](https://readthedocs.org/projects/cca-zoo/badge/?version=latest)](https://cca-zoo.readthedocs.io/en/latest/?badge=latest)
[![version](https://img.shields.io/pypi/v/cca-zoo)](https://pypi.org/project/cca-zoo/)
[![downloads](https://img.shields.io/pypi/dm/cca-zoo)](https://pypi.org/project/cca-zoo/)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.03823/status.svg)](https://doi.org/10.21105/joss.03823)
</div>
## Introduction
In today's data-driven world, revealing hidden relationships across multiview datasets is critical. **CCA-Zoo** is your go-to library, featuring a robust selection of linear, kernel, and deep canonical correlation analysis methods.
Designed to be user-friendly, CCA-Zoo is inspired by the ease of use in `scikit-learn` and `mvlearn`. It provides a seamless programming experience with familiar `fit`, `transform`, and `fit_transform` methods.
## 📖 Table of Contents
- [Quick Start](#-quick-start)
- [Performance Highlights](#-performance-highlights)
- [Detailed Documentation](#-detailed-documentation)
- [How to Cite](#-how-to-cite)
- [Contribute](#-contribute)
- [Acknowledgments](#-acknowledgments)
## 🚀 Quick Start
### Installation
Whether you're a `pip` enthusiast or a `poetry` aficionado, installing CCA-Zoo is a breeze:
```bash
pip install cca-zoo
# For additional features
pip install cca-zoo[probabilistic, visualisation, deep]
```
For Poetry users:
```bash
poetry add cca-zoo
# For extra features
poetry add cca-zoo[probabilistic, visualisation, deep]
```
Note that `deep` requires `torch` and `lightning` which may be better installed separately following the [PyTorch installation guide](https://pytorch.org/get-started/locally/).
`probabilistic` requires `numpyro` which may be better installed separately following the [NumPyro installation guide](https://num.pyro.ai/en/stable/getting_started.html#installation).
`visualisation` requires `matplotlib` and `seaborn`
## Plug into the Machine Learning Ecosystem
CCA-Zoo is designed to be compatible with the machine learning ecosystem. It is built on top of `scikit-learn`, `tensorly`, `torch`, `pytorch-lightning`, and `numpyro`.
<img src="docs/_static/CCA_Zoo_map.svg" alt="drawing" width="1000"/>
## 🏎️ Performance Highlights
CCA-Zoo shines when it comes to high-dimensional data analysis. It significantly outperforms scikit-learn, particularly as dimensionality increases. For comprehensive benchmarks, see our [script](benchmark/cca_high_dimensions.py) and the graph below.
![Benchmark Plot CCA](benchmark/CCA_Speed_Benchmark.svg)
![Benchmark Plot PLS](benchmark/PLS_Speed_Benchmark.svg)
## 📚 Detailed Documentation
Embark on a journey through multiview correlations with our [comprehensive guide](https://cca-zoo.readthedocs.io/en/latest/).
## 🙏 How to Cite
Your support means a lot to us! If CCA-Zoo has been beneficial for your research, there are two ways to show your appreciation:
1. Star our GitHub repository.
2. Cite our research paper in your publications.
For citing our work, please use the following BibTeX entry:
```bibtex
@software{Chapman_CCA-Zoo_2023,
author = {Chapman, James and Wang, Hao-Ting and Wells, Lennie and Wiesner, Johannes},
doi = {10.5281/zenodo.4382739},
month = aug,
title = {{CCA-Zoo}},
url = {https://github.com/jameschapman19/cca_zoo},
version = {2.3.0},
year = {2023}
}
```
Or check out our JOSS paper:
📜 Chapman et al., (2021). CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods in a scikit-learn style framework. Journal of Open Source Software, 6(68), 3823, [Link](https://doi.org/10.21105/joss.03823).
## 👩💻 Contribute
Every idea, every line of code adds value. Check out our [contribution guide](https://cca-zoo.readthedocs.io/en/latest/developer_info/contribute.html) and help CCA-Zoo soar to new heights!
## 🙌 Acknowledgments
Special thanks to the pioneers whose work has shaped this field. Explore their work:
- Regularised CCA/PLS: [MATLAB](https://github.com/anaston/PLS_CCA_framework)
- Sparse PLS: [MATLAB SPLS](https://github.com/jmmonteiro/spls)
- DCCA/DCCAE: [Keras DCCA](https://github.com/VahidooX), [Torch DCCA](https://github.com/Michaelvll/DeepCCA)
Raw data
{
"_id": null,
"home_page": "https://github.com/jameschapman19/cca_zoo",
"name": "cca-zoo",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0.0,>=3.8",
"maintainer_email": null,
"keywords": "cca",
"author": "jameschapman",
"author_email": "james.chapman.19@ucl.ac.uk",
"download_url": "https://files.pythonhosted.org/packages/cc/b3/e27e174252960413d86a5c1bb586b96c25a06b60ebb4d24494910253fabe/cca_zoo-2.6.0.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n\n<img src=\"docs/logos/cca-zoo-logo.svg\" alt=\"drawing\" width=\"200\"/>\n\n# CCA-Zoo\n\n**Unlock the hidden relationships in multiview data.**\n\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5748062.svg)](https://doi.org/10.5281/zenodo.4382739)\n[![codecov](https://codecov.io/gh/jameschapman19/cca_zoo/branch/main/graph/badge.svg?token=JHG9VUB0L8)](https://codecov.io/gh/jameschapman19/cca_zoo)\n![Build Status](https://github.com/jameschapman19/cca_zoo/actions/workflows/changes.yml/badge.svg)\n[![Documentation Status](https://readthedocs.org/projects/cca-zoo/badge/?version=latest)](https://cca-zoo.readthedocs.io/en/latest/?badge=latest)\n[![version](https://img.shields.io/pypi/v/cca-zoo)](https://pypi.org/project/cca-zoo/)\n[![downloads](https://img.shields.io/pypi/dm/cca-zoo)](https://pypi.org/project/cca-zoo/)\n[![DOI](https://joss.theoj.org/papers/10.21105/joss.03823/status.svg)](https://doi.org/10.21105/joss.03823)\n\n\n</div>\n\n## Introduction\n\nIn today's data-driven world, revealing hidden relationships across multiview datasets is critical. **CCA-Zoo** is your go-to library, featuring a robust selection of linear, kernel, and deep canonical correlation analysis methods.\n\nDesigned to be user-friendly, CCA-Zoo is inspired by the ease of use in `scikit-learn` and `mvlearn`. It provides a seamless programming experience with familiar `fit`, `transform`, and `fit_transform` methods.\n\n## \ud83d\udcd6 Table of Contents\n\n- [Quick Start](#-quick-start)\n- [Performance Highlights](#-performance-highlights)\n- [Detailed Documentation](#-detailed-documentation)\n- [How to Cite](#-how-to-cite)\n- [Contribute](#-contribute)\n- [Acknowledgments](#-acknowledgments)\n\n## \ud83d\ude80 Quick Start\n\n### Installation\n\nWhether you're a `pip` enthusiast or a `poetry` aficionado, installing CCA-Zoo is a breeze:\n\n```bash\npip install cca-zoo\n# For additional features\npip install cca-zoo[probabilistic, visualisation, deep]\n```\n\nFor Poetry users:\n\n```bash\npoetry add cca-zoo\n# For extra features\npoetry add cca-zoo[probabilistic, visualisation, deep]\n```\n\nNote that `deep` requires `torch` and `lightning` which may be better installed separately following the [PyTorch installation guide](https://pytorch.org/get-started/locally/).\n\n`probabilistic` requires `numpyro` which may be better installed separately following the [NumPyro installation guide](https://num.pyro.ai/en/stable/getting_started.html#installation).\n\n`visualisation` requires `matplotlib` and `seaborn`\n\n## Plug into the Machine Learning Ecosystem\n\nCCA-Zoo is designed to be compatible with the machine learning ecosystem. It is built on top of `scikit-learn`, `tensorly`, `torch`, `pytorch-lightning`, and `numpyro`.\n\n<img src=\"docs/_static/CCA_Zoo_map.svg\" alt=\"drawing\" width=\"1000\"/>\n\n## \ud83c\udfce\ufe0f Performance Highlights\nCCA-Zoo shines when it comes to high-dimensional data analysis. It significantly outperforms scikit-learn, particularly as dimensionality increases. For comprehensive benchmarks, see our [script](benchmark/cca_high_dimensions.py) and the graph below.\n\n![Benchmark Plot CCA](benchmark/CCA_Speed_Benchmark.svg)\n![Benchmark Plot PLS](benchmark/PLS_Speed_Benchmark.svg)\n\n## \ud83d\udcda Detailed Documentation\n\nEmbark on a journey through multiview correlations with our [comprehensive guide](https://cca-zoo.readthedocs.io/en/latest/).\n\n## \ud83d\ude4f How to Cite\n\nYour support means a lot to us! If CCA-Zoo has been beneficial for your research, there are two ways to show your appreciation:\n\n1. Star our GitHub repository.\n2. Cite our research paper in your publications.\n\nFor citing our work, please use the following BibTeX entry:\n\n```bibtex\n@software{Chapman_CCA-Zoo_2023,\nauthor = {Chapman, James and Wang, Hao-Ting and Wells, Lennie and Wiesner, Johannes},\ndoi = {10.5281/zenodo.4382739},\nmonth = aug,\ntitle = {{CCA-Zoo}},\nurl = {https://github.com/jameschapman19/cca_zoo},\nversion = {2.3.0},\nyear = {2023}\n}\n```\n\nOr check out our JOSS paper:\n\n\ud83d\udcdc Chapman et al., (2021). CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods in a scikit-learn style framework. Journal of Open Source Software, 6(68), 3823, [Link](https://doi.org/10.21105/joss.03823).\n\n## \ud83d\udc69\u200d\ud83d\udcbb Contribute\n\nEvery idea, every line of code adds value. Check out our [contribution guide](https://cca-zoo.readthedocs.io/en/latest/developer_info/contribute.html) and help CCA-Zoo soar to new heights!\n\n## \ud83d\ude4c Acknowledgments\n\nSpecial thanks to the pioneers whose work has shaped this field. Explore their work:\n\n- Regularised CCA/PLS: [MATLAB](https://github.com/anaston/PLS_CCA_framework)\n- Sparse PLS: [MATLAB SPLS](https://github.com/jmmonteiro/spls)\n- DCCA/DCCAE: [Keras DCCA](https://github.com/VahidooX), [Torch DCCA](https://github.com/Michaelvll/DeepCCA)\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Canonical Correlation Analysis Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic methods in a scikit-learn style framework",
"version": "2.6.0",
"project_urls": {
"Homepage": "https://github.com/jameschapman19/cca_zoo"
},
"split_keywords": [
"cca"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f597011d5be04b3fb7ca4fe4c7fd27409c39b33991811efbff8e9b3d266343b1",
"md5": "8d7bca9dea2316805dc5d63cf7e628ac",
"sha256": "57cadae468826831494807fbcba8868d7bc3870eecedb758dd17cd35a4eff850"
},
"downloads": -1,
"filename": "cca_zoo-2.6.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8d7bca9dea2316805dc5d63cf7e628ac",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0.0,>=3.8",
"size": 115195,
"upload_time": "2024-04-19T10:57:34",
"upload_time_iso_8601": "2024-04-19T10:57:34.156979Z",
"url": "https://files.pythonhosted.org/packages/f5/97/011d5be04b3fb7ca4fe4c7fd27409c39b33991811efbff8e9b3d266343b1/cca_zoo-2.6.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ccb3e27e174252960413d86a5c1bb586b96c25a06b60ebb4d24494910253fabe",
"md5": "56259bb3ada10db4ea3ec58cc7c0dcf4",
"sha256": "7b2a30009f9b826807f837689520f50f45ec5d31ff38da7a1ac6a04e72436006"
},
"downloads": -1,
"filename": "cca_zoo-2.6.0.tar.gz",
"has_sig": false,
"md5_digest": "56259bb3ada10db4ea3ec58cc7c0dcf4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0.0,>=3.8",
"size": 75538,
"upload_time": "2024-04-19T10:57:42",
"upload_time_iso_8601": "2024-04-19T10:57:42.779722Z",
"url": "https://files.pythonhosted.org/packages/cc/b3/e27e174252960413d86a5c1bb586b96c25a06b60ebb4d24494910253fabe/cca_zoo-2.6.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-19 10:57:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jameschapman19",
"github_project": "cca_zoo",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "cca-zoo"
}