.. |acdclogo| image:: https://raw.githubusercontent.com/SchmollerLab/Cell_ACDC/6bf8442b6a33d41fa9de09a2098c6c2b9efbcff1/cellacdc/resources/logo.svg
:width: 80
|acdclogo| Welcome to Cell-ACDC!
================================
A GUI-based Python framework for **segmentation**, **tracking**, **cell cycle annotations** and **quantification** of microscopy data
-------------------------------------------------------------------------------------------------------------------------------------
*Written in Python 3 by* \ `Francesco Padovani <https://github.com/ElpadoCan>`__ \ *and* \ `Benedikt Mairhoermann <https://github.com/Beno71>`__\ *.*
.. |build_win_pyqt5| image:: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-windows_pyqt5.yml/badge.svg
:target: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-windows_pyqt5.yml
:alt: Build Status (Windows PyQt5)
.. |build_ubuntu_pyqt5| image:: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-ubuntu_pyqt5.yml/badge.svg
:target: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-ubuntu_pyqt5.yml
:alt: Build Status (Ubuntu PyQt5)
.. |build_macos_pyqt5| image:: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-macos_pyqt5.yml/badge.svg
:target: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-macos_pyqt5.yml
:alt: Build Status (macOS PyQt5)
.. |build_win_pyqt6| image:: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-windows_pyqt6.yml/badge.svg
:target: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-windows_pyqt6.yml
:alt: Build Status (Windows PyQt6)
.. |build_macos_pyqt6| image:: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-macos_pyqt6.yml/badge.svg
:target: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-macos_pyqt6.yml
:alt: Build Status (macOS PyQt6)
.. |py_version| image:: https://img.shields.io/pypi/pyversions/cellacdc
:target: https://www.python.org/downloads/
:alt: Python Version
.. |pypi_version| image:: https://img.shields.io/pypi/v/cellacdc?color=red
:target: https://pypi.org/project/cellacdc/
:alt: PyPi Version
.. |downloads_month| image:: https://static.pepy.tech/badge/cellacdc/month
:target: https://pepy.tech/project/cellacdc
:alt: Downloads per month
.. |license| image:: https://img.shields.io/badge/license-BSD%203--Clause-brightgreen
:target: https://github.com/SchmollerLab/Cell_ACDC/blob/main/LICENSE
:alt: License
.. |repo_size| image:: https://img.shields.io/github/repo-size/SchmollerLab/Cell_ACDC
:target: https://github.com/SchmollerLab/Cell_ACDC
:alt: Repository Size
.. |doi| image:: https://img.shields.io/badge/DOI-10.1101%2F2021.09.28.462199-informational
:target: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-022-01372-6
:alt: DOI
.. |docs| image:: https://readthedocs.org/projects/cell-acdc/badge/?version=latest
:target: https://cell-acdc.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
|build_win_pyqt5| |build_ubuntu_pyqt5| |build_macos_pyqt5| |build_win_pyqt6|
|build_macos_pyqt6| |py_version| |pypi_version| |downloads_month| |license|
|repo_size| |doi| |docs|
|
.. image:: https://raw.githubusercontent.com/SchmollerLab/Cell_ACDC/main/cellacdc/resources/figures/Fig1.jpg
:alt: Overview of pipeline and GUI
:width: 600
Overview of pipeline and GUI
Overview
========
Let's face it, when dealing with segmentation of microscopy data we
often do not have time to check that **everything is correct**, because
it is a **tedious** and **very time consuming process**. Cell-ACDC comes
to the rescue! We combined the currently **best available neural network
models** (such as `Segment Anything Model
(SAM) <https://github.com/facebookresearch/segment-anything>`__,
`YeaZ <https://www.nature.com/articles/s41467-020-19557-4>`__,
`cellpose <https://www.nature.com/articles/s41592-020-01018-x>`__,
`StarDist <https://github.com/stardist/stardist>`__,
`YeastMate <https://github.com/hoerlteam/YeastMate>`__,
`omnipose <https://omnipose.readthedocs.io/>`__,
`delta <https://gitlab.com/dunloplab/delta>`__,
`DeepSea <https://doi.org/10.1016/j.crmeth.2023.100500>`__, etc.) and we
complemented them with a **fast and intuitive GUI**.
We developed and implemented several smart functionalities such as
**real-time continuous tracking**, **automatic propagation** of error
correction, and several tools to facilitate manual correction, from
simple yet useful **brush** and **eraser** to more complex flood fill
(magic wand) and Random Walker segmentation routines.
See below **how it compares** to other popular tools available (*Table 1
of
our* \ `publication <https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-022-01372-6>`__).
.. image:: https://raw.githubusercontent.com/SchmollerLab/Cell_ACDC/main/cellacdc/resources/figures/Table1.jpg
:width: 700
Is it only about segmentation?
------------------------------
Of course not! Cell-ACDC automatically computes **several single-cell
numerical features** such as cell area and cell volume, plus the mean,
max, median, sum and quantiles of any additional fluorescent channel's
signal. It even performs background correction, to compute the **protein
amount and concentration**.
You can load and analyse single **2D images**, **3D data** (3D z-stacks
or 2D images over time) and even **4D data** (3D z-stacks over time).
Finally, we provide Jupyter notebooks to **visualize** and interactively
**explore** the data produced.
Bidirectional microscopy shift error correction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Is every second line in your files from your bidirectional microscopy
shifted? Look
`here <https://github.com/SchmollerLab/Cell_ACDC/blob/main/cellacdc/scripts/README.md>`__
for further information on how to correct your data.
Scientific publications where Cell-ACDC was used
================================================
See here for a list of the **scientific publications** where Cell-ACDC was used:
`Link <https://cell-acdc.readthedocs.io/en/latest/publications.html>`_.
Resources
=========
- Please find a complete user guide `here <https://cell-acdc.readthedocs.io/en/latest/>`__
- `Installation guide <https://cell-acdc.readthedocs.io/en/latest/installation.html#installation-using-anaconda-recommended>`__
- `User manual <https://github.com/SchmollerLab/Cell_ACDC/blob/main/UserManual/Cell-ACDC_User_Manual.pdf>`__
- `Publication <https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-022-01372-6>`__ of Cell-ACDC
- `Image.sc Forum <https://forum.image.sc/tag/cell-acdc>`_ to ask **any question**. Make sure to tag the Topic with the tag ``cell-acdc``.
- **Report issues, request a feature or ask questions** by opening a new issue `here <https://github.com/SchmollerLab/Cell_ACDC/issues>`__
- X `thread <https://twitter.com/frank_pado/status/1443957038841794561?s=20>`__
- `Scientific publications where Cell-ACDC was used <https://cell-acdc.readthedocs.io/en/latest/publications.html>`__
Citing Cell-ACDC and the available models
=========================================
If you find Cell-ACDC useful, please cite it as follows:
Padovani, F., Mairhörmann, B., Falter-Braun, P., Lengefeld, J. &
Schmoller, K. M. Segmentation, tracking and cell cycle analysis of live-cell
imaging data with Cell-ACDC. *BMC Biology* 20, 174 (2022).
DOI: `10.1186/s12915-022-01372-6 <https://doi.org/10.1186/s12915-022-01372-6>`_
**IMPORTANT**: when citing Cell-ACDC make sure to also cite the paper of the
segmentation models and trackers you used!
See `here <https://cell-acdc.readthedocs.io/en/latest/citation.html>`_ for a list of models currently available in Cell-ACDC.
Contact
=======
**Do not hesitate to contact us** here on GitHub (by opening an issue)
or directly at the email padovaf@tcd.ie for any problem and/or feedback
on how to improve the user experience!
Contributing
============
At Cell-ACDC we encourage contributions to the code! Please read our
`contributing guide <https://github.com/SchmollerLab/Cell_ACDC/blob/main/cellacdc/docs/source/contributing.rst>`_
to get started.
Raw data
{
"_id": null,
"home_page": null,
"name": "cellacdc",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "live-cell imaging, cell segmentation, cell tracking, cell cycle annotations, image analysis",
"author": null,
"author_email": "Francesco Padovani and Benedikt Mairhoermann <francesco.padovani@helmholtz-muenchen.de>",
"download_url": "https://files.pythonhosted.org/packages/96/df/64fafafbec3d405e2248cacaa1757a929a418f4842db8aa329040dd13b2b/cellacdc-1.5.9.tar.gz",
"platform": null,
"description": ".. |acdclogo| image:: https://raw.githubusercontent.com/SchmollerLab/Cell_ACDC/6bf8442b6a33d41fa9de09a2098c6c2b9efbcff1/cellacdc/resources/logo.svg\r\n :width: 80\r\n\r\n|acdclogo| Welcome to Cell-ACDC!\r\n================================\r\n\r\nA GUI-based Python framework for **segmentation**, **tracking**, **cell cycle annotations** and **quantification** of microscopy data\r\n-------------------------------------------------------------------------------------------------------------------------------------\r\n\r\n*Written in Python 3 by* \\ `Francesco Padovani <https://github.com/ElpadoCan>`__ \\ *and* \\ `Benedikt Mairhoermann <https://github.com/Beno71>`__\\ *.*\r\n\r\n.. |build_win_pyqt5| image:: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-windows_pyqt5.yml/badge.svg\r\n :target: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-windows_pyqt5.yml\r\n :alt: Build Status (Windows PyQt5)\r\n\r\n.. |build_ubuntu_pyqt5| image:: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-ubuntu_pyqt5.yml/badge.svg\r\n :target: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-ubuntu_pyqt5.yml\r\n :alt: Build Status (Ubuntu PyQt5)\r\n\r\n.. |build_macos_pyqt5| image:: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-macos_pyqt5.yml/badge.svg\r\n :target: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-macos_pyqt5.yml\r\n :alt: Build Status (macOS PyQt5)\r\n\r\n.. |build_win_pyqt6| image:: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-windows_pyqt6.yml/badge.svg\r\n :target: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-windows_pyqt6.yml\r\n :alt: Build Status (Windows PyQt6)\r\n\r\n.. |build_macos_pyqt6| image:: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-macos_pyqt6.yml/badge.svg\r\n :target: https://github.com/SchmollerLab/Cell_ACDC/actions/workflows/build-macos_pyqt6.yml\r\n :alt: Build Status (macOS PyQt6)\r\n\r\n.. |py_version| image:: https://img.shields.io/pypi/pyversions/cellacdc\r\n :target: https://www.python.org/downloads/\r\n :alt: Python Version\r\n\r\n.. |pypi_version| image:: https://img.shields.io/pypi/v/cellacdc?color=red\r\n :target: https://pypi.org/project/cellacdc/\r\n :alt: PyPi Version\r\n\r\n.. |downloads_month| image:: https://static.pepy.tech/badge/cellacdc/month\r\n :target: https://pepy.tech/project/cellacdc\r\n :alt: Downloads per month\r\n\r\n.. |license| image:: https://img.shields.io/badge/license-BSD%203--Clause-brightgreen\r\n :target: https://github.com/SchmollerLab/Cell_ACDC/blob/main/LICENSE\r\n :alt: License\r\n\r\n.. |repo_size| image:: https://img.shields.io/github/repo-size/SchmollerLab/Cell_ACDC\r\n :target: https://github.com/SchmollerLab/Cell_ACDC\r\n :alt: Repository Size\r\n\r\n.. |doi| image:: https://img.shields.io/badge/DOI-10.1101%2F2021.09.28.462199-informational\r\n :target: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-022-01372-6\r\n :alt: DOI\r\n\r\n.. |docs| image:: https://readthedocs.org/projects/cell-acdc/badge/?version=latest\r\n :target: https://cell-acdc.readthedocs.io/en/latest/?badge=latest\r\n :alt: Documentation Status\r\n\r\n|build_win_pyqt5| |build_ubuntu_pyqt5| |build_macos_pyqt5| |build_win_pyqt6|\r\n|build_macos_pyqt6| |py_version| |pypi_version| |downloads_month| |license|\r\n|repo_size| |doi| |docs|\r\n\r\n|\r\n\r\n.. image:: https://raw.githubusercontent.com/SchmollerLab/Cell_ACDC/main/cellacdc/resources/figures/Fig1.jpg\r\n :alt: Overview of pipeline and GUI\r\n :width: 600\r\n\r\nOverview of pipeline and GUI\r\n\r\nOverview\r\n========\r\nLet's face it, when dealing with segmentation of microscopy data we\r\noften do not have time to check that **everything is correct**, because\r\nit is a **tedious** and **very time consuming process**. Cell-ACDC comes\r\nto the rescue! We combined the currently **best available neural network\r\nmodels** (such as `Segment Anything Model\r\n(SAM) <https://github.com/facebookresearch/segment-anything>`__,\r\n`YeaZ <https://www.nature.com/articles/s41467-020-19557-4>`__,\r\n`cellpose <https://www.nature.com/articles/s41592-020-01018-x>`__,\r\n`StarDist <https://github.com/stardist/stardist>`__,\r\n`YeastMate <https://github.com/hoerlteam/YeastMate>`__,\r\n`omnipose <https://omnipose.readthedocs.io/>`__,\r\n`delta <https://gitlab.com/dunloplab/delta>`__,\r\n`DeepSea <https://doi.org/10.1016/j.crmeth.2023.100500>`__, etc.) and we\r\ncomplemented them with a **fast and intuitive GUI**.\r\n\r\nWe developed and implemented several smart functionalities such as\r\n**real-time continuous tracking**, **automatic propagation** of error\r\ncorrection, and several tools to facilitate manual correction, from\r\nsimple yet useful **brush** and **eraser** to more complex flood fill\r\n(magic wand) and Random Walker segmentation routines.\r\n\r\nSee below **how it compares** to other popular tools available (*Table 1\r\nof\r\nour* \\ `publication <https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-022-01372-6>`__).\r\n\r\n.. image:: https://raw.githubusercontent.com/SchmollerLab/Cell_ACDC/main/cellacdc/resources/figures/Table1.jpg\r\n :width: 700\r\n\r\nIs it only about segmentation?\r\n------------------------------\r\n\r\nOf course not! Cell-ACDC automatically computes **several single-cell\r\nnumerical features** such as cell area and cell volume, plus the mean,\r\nmax, median, sum and quantiles of any additional fluorescent channel's\r\nsignal. It even performs background correction, to compute the **protein\r\namount and concentration**.\r\n\r\nYou can load and analyse single **2D images**, **3D data** (3D z-stacks\r\nor 2D images over time) and even **4D data** (3D z-stacks over time).\r\n\r\nFinally, we provide Jupyter notebooks to **visualize** and interactively\r\n**explore** the data produced.\r\n\r\nBidirectional microscopy shift error correction\r\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\nIs every second line in your files from your bidirectional microscopy\r\nshifted? Look\r\n`here <https://github.com/SchmollerLab/Cell_ACDC/blob/main/cellacdc/scripts/README.md>`__\r\nfor further information on how to correct your data.\r\n\r\nScientific publications where Cell-ACDC was used\r\n================================================\r\n\r\nSee here for a list of the **scientific publications** where Cell-ACDC was used: \r\n`Link <https://cell-acdc.readthedocs.io/en/latest/publications.html>`_.\r\n\r\nResources\r\n=========\r\n- Please find a complete user guide `here <https://cell-acdc.readthedocs.io/en/latest/>`__\r\n- `Installation guide <https://cell-acdc.readthedocs.io/en/latest/installation.html#installation-using-anaconda-recommended>`__\r\n- `User manual <https://github.com/SchmollerLab/Cell_ACDC/blob/main/UserManual/Cell-ACDC_User_Manual.pdf>`__\r\n- `Publication <https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-022-01372-6>`__ of Cell-ACDC\r\n- `Image.sc Forum <https://forum.image.sc/tag/cell-acdc>`_ to ask **any question**. Make sure to tag the Topic with the tag ``cell-acdc``. \r\n- **Report issues, request a feature or ask questions** by opening a new issue `here <https://github.com/SchmollerLab/Cell_ACDC/issues>`__\r\n- X `thread <https://twitter.com/frank_pado/status/1443957038841794561?s=20>`__\r\n- `Scientific publications where Cell-ACDC was used <https://cell-acdc.readthedocs.io/en/latest/publications.html>`__\r\n\r\nCiting Cell-ACDC and the available models\r\n=========================================\r\n\r\nIf you find Cell-ACDC useful, please cite it as follows:\r\n\r\n Padovani, F., Mairh\u00f6rmann, B., Falter-Braun, P., Lengefeld, J. & \r\n Schmoller, K. M. Segmentation, tracking and cell cycle analysis of live-cell \r\n imaging data with Cell-ACDC. *BMC Biology* 20, 174 (2022). \r\n DOI: `10.1186/s12915-022-01372-6 <https://doi.org/10.1186/s12915-022-01372-6>`_ \r\n\r\n**IMPORTANT**: when citing Cell-ACDC make sure to also cite the paper of the \r\nsegmentation models and trackers you used! \r\nSee `here <https://cell-acdc.readthedocs.io/en/latest/citation.html>`_ for a list of models currently available in Cell-ACDC.\r\n\r\nContact\r\n=======\r\n**Do not hesitate to contact us** here on GitHub (by opening an issue)\r\nor directly at the email padovaf@tcd.ie for any problem and/or feedback\r\non how to improve the user experience!\r\n\r\nContributing\r\n============\r\n\r\nAt Cell-ACDC we encourage contributions to the code! Please read our \r\n`contributing guide <https://github.com/SchmollerLab/Cell_ACDC/blob/main/cellacdc/docs/source/contributing.rst>`_ \r\nto get started.\r\n",
"bugtrack_url": null,
"license": null,
"summary": "Cell segmentation, tracking and event annotation",
"version": "1.5.9",
"project_urls": {
"Author contact": "https://schmollerlab.com/francescopadovani",
"GitHub page": "https://github.com/SchmollerLab/Cell_ACDC",
"Schmoller lab": "https://schmollerlab.com/"
},
"split_keywords": [
"live-cell imaging",
" cell segmentation",
" cell tracking",
" cell cycle annotations",
" image analysis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e7734b932197928883b9d577efb4a313005820d3e262e356928c579f70b6d3e0",
"md5": "543363cb2d35afb0f6aecbcffe95055f",
"sha256": "00b41f70fc5376e7e66c7af5842a2e278ead756dfb109ffb1d614d4e25d33293"
},
"downloads": -1,
"filename": "cellacdc-1.5.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "543363cb2d35afb0f6aecbcffe95055f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 15941966,
"upload_time": "2024-12-17T10:17:03",
"upload_time_iso_8601": "2024-12-17T10:17:03.209524Z",
"url": "https://files.pythonhosted.org/packages/e7/73/4b932197928883b9d577efb4a313005820d3e262e356928c579f70b6d3e0/cellacdc-1.5.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "96df64fafafbec3d405e2248cacaa1757a929a418f4842db8aa329040dd13b2b",
"md5": "4a3ae005b95b84683820f80b3bea9530",
"sha256": "fd996606a44129b42eea02341d6516182ed902ad1033ca97dd9eda44eeaf85a3"
},
"downloads": -1,
"filename": "cellacdc-1.5.9.tar.gz",
"has_sig": false,
"md5_digest": "4a3ae005b95b84683820f80b3bea9530",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 43687854,
"upload_time": "2024-12-17T10:17:08",
"upload_time_iso_8601": "2024-12-17T10:17:08.713900Z",
"url": "https://files.pythonhosted.org/packages/96/df/64fafafbec3d405e2248cacaa1757a929a418f4842db8aa329040dd13b2b/cellacdc-1.5.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-17 10:17:08",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "SchmollerLab",
"github_project": "Cell_ACDC",
"travis_ci": true,
"coveralls": false,
"github_actions": true,
"lcname": "cellacdc"
}