cerberus-etl


Namecerberus-etl JSON
Version 0.0.2 PyPI version JSON
download
home_pageNone
SummaryA utility ETL library for internal development at NUDA
upload_time2024-10-16 04:28:22
maintainerNone
docs_urlNone
authorGabriel Deglmann Kasten
requires_pythonNone
licenseNone
keywords python etl data pipeline data stream nuda
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            cerberuslib is a robust ETL library designed for the NUDA team at Unimed SC. 
This library provides essential utilities for data extraction, transformation, and loading processes, 
streamlining workflows and enhancing data management capabilities.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cerberus-etl",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, ETL, data pipeline, data stream, NUDA",
    "author": "Gabriel Deglmann Kasten",
    "author_email": "gabriel.kasten@unimedsc.coop.br",
    "download_url": "https://files.pythonhosted.org/packages/70/3e/8bc899e55678f5b30a1dda46ad1b647dea450158d86639e7ff5396a1356e/cerberus_etl-0.0.2.tar.gz",
    "platform": null,
    "description": "cerberuslib is a robust ETL library designed for the NUDA team at Unimed SC. \nThis library provides essential utilities for data extraction, transformation, and loading processes, \nstreamlining workflows and enhancing data management capabilities.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A utility ETL library for internal development at NUDA",
    "version": "0.0.2",
    "project_urls": null,
    "split_keywords": [
        "python",
        " etl",
        " data pipeline",
        " data stream",
        " nuda"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b0751a1c1c7aa65def10db5b35bae9b33a10ab66beb6419f64d2eb0dd05f0621",
                "md5": "52004b4cc82c251a9cbaa0b7716def71",
                "sha256": "d6fb0fb7dcc04de30ba93cdae0959c701c9f0532a9f5fa70749305bee8ad073f"
            },
            "downloads": -1,
            "filename": "cerberus_etl-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "52004b4cc82c251a9cbaa0b7716def71",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 1790,
            "upload_time": "2024-10-16T04:28:21",
            "upload_time_iso_8601": "2024-10-16T04:28:21.559708Z",
            "url": "https://files.pythonhosted.org/packages/b0/75/1a1c1c7aa65def10db5b35bae9b33a10ab66beb6419f64d2eb0dd05f0621/cerberus_etl-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "703e8bc899e55678f5b30a1dda46ad1b647dea450158d86639e7ff5396a1356e",
                "md5": "e6b572aba0d9f2315f7e62d6315cbef0",
                "sha256": "473d8fb8b2cf666b464eae5d501268fdcd5253a6784fbb1f1abefd2d7fde22dd"
            },
            "downloads": -1,
            "filename": "cerberus_etl-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "e6b572aba0d9f2315f7e62d6315cbef0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 1593,
            "upload_time": "2024-10-16T04:28:22",
            "upload_time_iso_8601": "2024-10-16T04:28:22.802463Z",
            "url": "https://files.pythonhosted.org/packages/70/3e/8bc899e55678f5b30a1dda46ad1b647dea450158d86639e7ff5396a1356e/cerberus_etl-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-16 04:28:22",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "cerberus-etl"
}
        
Elapsed time: 0.53022s