[![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)
# Chai-1
[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)
An free and open source community implementation of Chai-1 in PyTorch. [Paper is here](https://chaiassets.com/chai-1/paper/technical_report_v1.pdf)
Join our discord to help us implement this paper!
## Installation
```bash
pip3 install chai-one
```
## Usage
```python
######### example.py
import torch
from loguru import logger
from chai_one.model import ChaiOne
# Set up model parameters
dim_single = 128
dim_pairwise = 128
dim_msa = 128
dim_msa_input = 134 # Adjusted to match the expected input dimension
dim_additional_msa_feats = 2
window_size = 25
# Initialize the model
logger.info("Initializing ChaiOne model")
model = ChaiOne(
dim_single=dim_single,
dim_pairwise=dim_pairwise,
msa_depth=4,
dim_msa=dim_msa,
dim_msa_input=dim_msa_input, # Set to 134
dim_additional_msa_feats=0,
msa_pwa_heads=8,
msa_pwa_dim_head=32,
layerscale_output=False,
heads=8,
window_size=window_size,
num_memory_kv=0,
attn_layers=48,
)
# Create dummy input tensors
batch_size = 1
seq_length = 100
num_msa = 4
logger.info(
f"Creating input tensors with shape: batch_size={batch_size}, seq_length={seq_length}, num_msa={num_msa}"
)
single_repr = torch.randn(batch_size, seq_length, dim_single)
pairwise_repr = torch.randn(
batch_size, seq_length, seq_length, dim_pairwise
)
# Create msa tensor with matching input size for msa_init_proj (134 features)
msa = torch.randn(
batch_size, num_msa, seq_length, dim_msa_input
) # Adjusted to 134
# Forward pass
logger.info("Performing forward pass")
output = model(
single_repr=single_repr,
pairwise_repr=pairwise_repr,
msa=msa,
)
logger.info(f"Output shape: {output.shape}")
```
# License
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/Chai-1",
"name": "chai-one",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/10/85/a8e467a1d91378d58daa8d23fc2148a8a0cb04342e4c92fdc4f339e2b230/chai_one-0.0.2.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)\n\n# Chai-1\n\n[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)\n\nAn free and open source community implementation of Chai-1 in PyTorch. [Paper is here](https://chaiassets.com/chai-1/paper/technical_report_v1.pdf)\n\nJoin our discord to help us implement this paper!\n\n\n## Installation\n\n```bash\npip3 install chai-one\n```\n\n## Usage\n\n```python\n\n######### example.py\nimport torch\nfrom loguru import logger\nfrom chai_one.model import ChaiOne\n\n# Set up model parameters\ndim_single = 128\ndim_pairwise = 128\ndim_msa = 128\ndim_msa_input = 134 # Adjusted to match the expected input dimension\ndim_additional_msa_feats = 2\nwindow_size = 25\n\n# Initialize the model\nlogger.info(\"Initializing ChaiOne model\")\nmodel = ChaiOne(\n dim_single=dim_single,\n dim_pairwise=dim_pairwise,\n msa_depth=4,\n dim_msa=dim_msa,\n dim_msa_input=dim_msa_input, # Set to 134\n dim_additional_msa_feats=0,\n msa_pwa_heads=8,\n msa_pwa_dim_head=32,\n layerscale_output=False,\n heads=8,\n window_size=window_size,\n num_memory_kv=0,\n attn_layers=48,\n)\n\n# Create dummy input tensors\nbatch_size = 1\nseq_length = 100\nnum_msa = 4\n\nlogger.info(\n f\"Creating input tensors with shape: batch_size={batch_size}, seq_length={seq_length}, num_msa={num_msa}\"\n)\nsingle_repr = torch.randn(batch_size, seq_length, dim_single)\npairwise_repr = torch.randn(\n batch_size, seq_length, seq_length, dim_pairwise\n)\n\n# Create msa tensor with matching input size for msa_init_proj (134 features)\nmsa = torch.randn(\n batch_size, num_msa, seq_length, dim_msa_input\n) # Adjusted to 134\n\n# Forward pass\nlogger.info(\"Performing forward pass\")\noutput = model(\n single_repr=single_repr,\n pairwise_repr=pairwise_repr,\n msa=msa,\n)\n\nlogger.info(f\"Output shape: {output.shape}\")\n\n```\n\n\n\n# License\nMIT\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Paper - Pytorch",
"version": "0.0.2",
"project_urls": {
"Documentation": "https://github.com/kyegomez/Chai-1",
"Homepage": "https://github.com/kyegomez/Chai-1",
"Repository": "https://github.com/kyegomez/Chai-1"
},
"split_keywords": [
"artificial intelligence",
" deep learning",
" optimizers",
" prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "243113258cb69e833b1bd9cb82ce2c745c931faeabe3709dbb540c2c252751e2",
"md5": "40976d5f6e028e71f2c9acf823b65025",
"sha256": "67befbc4d89cc15ffee664d6436e0ca4a5f9c893a9a8842e3d18784a44c1a8aa"
},
"downloads": -1,
"filename": "chai_one-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "40976d5f6e028e71f2c9acf823b65025",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 4115,
"upload_time": "2024-09-10T02:51:26",
"upload_time_iso_8601": "2024-09-10T02:51:26.105453Z",
"url": "https://files.pythonhosted.org/packages/24/31/13258cb69e833b1bd9cb82ce2c745c931faeabe3709dbb540c2c252751e2/chai_one-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1085a8e467a1d91378d58daa8d23fc2148a8a0cb04342e4c92fdc4f339e2b230",
"md5": "a44990043e5e4112641d660493b04235",
"sha256": "ce90c9b2a08727f21ecd4bf2e7771eb8089c539d26c09b6a8aa273e99d9ba646"
},
"downloads": -1,
"filename": "chai_one-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "a44990043e5e4112641d660493b04235",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 3839,
"upload_time": "2024-09-10T02:51:26",
"upload_time_iso_8601": "2024-09-10T02:51:26.988336Z",
"url": "https://files.pythonhosted.org/packages/10/85/a8e467a1d91378d58daa8d23fc2148a8a0cb04342e4c92fdc4f339e2b230/chai_one-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-10 02:51:26",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "Chai-1",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "chai-one"
}