# 🗯️ Chatnificent
### LLM chat app framework
### Minimally complete. Maximally hackable.
Build production-ready, full-stack chat applications in minutes. Customize everything in hours.
Chatnificent is a Python framework built on [Plotly's Dash](https://dash.plotly.com/) designed to get your LLM chat applications up and running instantly, while providing a robust, decoupled architecture for unlimited customization.
Stop wrestling with UI components, state management, and backend integrations. Start building magnificent chat apps.
[](https://pypi.python.org/pypi/chatnificent) [](http://pepy.tech/project/chatnificent) [](https://deepwiki.com/eliasdabbas/chatnificent)
## The Ethos
Frameworks should get out of your way.
* **Minimally Complete:** Out of the box, `Chatnificent` provides a fully functional, stateful, multi-user chat application with sensible defaults.
* **Maximally Hackable:** Every core pillar—the UI, the LLM provider, the database, the authentication, the RAG pipeline, and the core orchestration—is swappable. Customize or replace any part without fighting the framework.
## Features
* **LLM Agnostic:** Built-in support for OpenAI, Anthropic, Gemini, Ollama, OpenRouter, DeepSeek, and any other LLM API.
* **Flexible UI:** Default Bootstrap layout, with built-in Mantine and Minimal (pure HTML) layouts. Easily customizable with any Dash components.
* **Pluggable Storage:** InMemory, File-system, and SQLite included. Easily extendable to Redis, Postgres, etc.
* **Agentic Engine:** The core engine manages multi-turn conversations and standardized tool calling across providers.
* **Auth Ready:** Abstracted authentication layer for easy integration. No-login anonymous user auth enabled by default.
* **RTL Support:** Automatic detection and rendering of Right-to-Left languages.
* **Dash Native:** Leverage the full power of Plotly's Dash to integrate complex data visualizations and analytics.
## Installation
To get started quickly with the default UI (Bootstrap) and the default LLM provider (OpenAI):
```bash
pip install "chatnificent[default]"
export OPENAI_API_KEY="YOUR_API_KEY"
```
For a minimal installation (no UI libraries or LLM SDKs included):
```bash
pip install chatnificent
```
## Quickstart: Hello World (3 Lines)
This is a complete, working chat application.
Create a file `app.py`:
```python
from chatnificent import Chatnificent
app = Chatnificent()
if __name__ == "__main__":
app.run(debug=True)
```
Run it:
```bash
python app.py
```
Open your browser to [`http://127.0.0.1:8050`](http://127.0.0.1:8050). That's it. You have a fully functional chat UI with conversation history, mobile responsiveness, and URL-based session management.
## The Pillars of Hackability
Chatnificent's architecture is built around extensible Pillars. Every major function is handled by a dedicated component adhering to a strict interface.
| Pillar | Description | Defaults | Included Implementations |
| :--- | :--- | :--- | :--- |
| **`LLM`** | The brain (API calls, parsing). | `OpenAI` (or `Echo`) | OpenAI, Anthropic, Gemini, OpenRouter, DeepSeek, Ollama, Echo |
| **`Layout`** | The look and feel (UI components). | `Bootstrap` (or `Minimal`) | Bootstrap, Mantine, Minimal (HTML) |
| **`Store`** | The memory (Persistence). | `InMemory` | InMemory, File, SQLite |
| **`Auth`** | The gatekeeper (User identification). | `Anonymous` | Anonymous, SingleUser |
| **`Engine`** | The orchestrator (Request lifecycle). | `Synchronous` | Synchronous |
| **`Tools`** | Tool/function calling capabilities. | `NoTool` | PythonTool, NoTool |
| **`Retrieval`** | RAG knowledge retrieval. | `NoRetrieval` | NoRetrieval |
| **`URL`** | URL parsing and routing. | `PathBased` | PathBased, QueryParams |
You customize the app by injecting the implementations you need during initialization:
```python
from chatnificent import Chatnificent
import chatnificent as chat
app = Chatnificent(
llm=chat.llm.Anthropic(),
store=chat.store.SQLite(db_path="conversations.db"),
layout=chat.layout.Mantine()
)
```
## Progressive Power: Swapping the Pillars
Let's evolve the "Hello World" example by swapping pillars.
### Level 1: Swapping the LLM 🧠
Want to use Anthropic's Claude 3.5 Sonnet? Just swap the `llm` pillar.
*(Requires `pip install anthropic` and setting `ANTHROPIC_API_KEY`)*
```python
from chatnificent import Chatnificent
import chatnificent as chat
app = Chatnificent(
llm=chat.llm.Anthropic(default_model="claude-3-5-sonnet-20240620")
)
# Or try Gemini: app = Chatnificent(llm=chat.llm.Gemini())
# Or local Ollama: app = Chatnificent(llm=chat.llm.Ollama(default_model="llama3.1"))
```
Chatnificent handles the translation of message formats and tool-calling protocols automatically.
### Level 2: Adding Persistent Storage
The default `InMemory` store is ephemeral. Let's use `SQLite` for persistence.
```python
from chatnificent import Chatnificent
import chatnificent as chat
app = Chatnificent(
store=store.SQLite(db_path="conversations.db")
)
# Or use the filesystem: store=chat.store.File(base_dir="./chat_data")
```
Conversations are now persisted across server restarts, and the sidebar automatically loads your history.
### Level 3: Changing the Look and Feel 🎨
Don't want Bootstrap? Let's try the Mantine layout.
*(Requires `pip install dash-mantine-components`)*
```python
from chatnificent import Chatnificent
import chatnificent as chat
app = Chatnificent(layout=chat.layout.Mantine())
# Or use the barebones HTML layout: layout=layout.Minimal()
```
Want a completely custom design? Implement the `layout.Layout` abstract base class. The framework ensures your custom layout integrates seamlessly, provided you include the required component IDs (e.g., `input_textarea`, `messages_container`, etc.).
### Level 4: Custom Authentication
The default `Anonymous` auth isolates users by random user ID. You can easily implement custom logic.
```python
from chatnificent import Chatnificent, auth
class HeaderAuth(auth.Auth):
def get_current_user_id(self, **kwargs) -> str:
from flask import request
# Identify user based on a header (e.g., provided by an auth proxy)
return request.headers.get("X-User-Id", "unknown_user")
app = Chatnificent(auth=HeaderAuth())
```
### Level 5: The Engine (Advanced Orchestration)
The `Engine` orchestrates the entire request lifecycle: resolving the conversation, RAG retrieval, the agentic loop (Tools + LLM calls), and persistence.
The default `Synchronous` engine provides "hooks" (empty methods called at specific points) and "seams" (core logic methods) that you can override to deeply customize behavior without rewriting the core logic.
```python
from chatnificent import Chatnificent
import chatnificent as chat
from typing import Any, Optional
# Create a custom engine by inheriting from the default
class CustomEngine(chat.engine.Synchronous):
# 1. Override a HOOK to add monitoring/logging
def _after_llm_call(self, llm_response: Any) -> None:
# Example: Extract token usage if the LLM response object has a 'usage' attribute
tokens = getattr(llm_response, 'usage', 'N/A')
print(f"[MONITORING] LLM call complete. Tokens: {tokens}")
# 2. Override a SEAM to modify core logic (e.g., prompt engineering)
def _prepare_llm_payload(self, conversation, retrieval_context: Optional[str]):
# Get the default payload (which already includes the context if present)
payload = super()._prepare_llm_payload(conversation, retrieval_context)
# Inject a custom system prompt if none exists
if not any(m['role'] == 'system' for m in payload):
payload.insert(0, {"role": "system", "content": "Be brief and professional."})
return payload
# Initialize the app, passing the engine instance.
# Chatnificent's constructor will automatically bind the app reference to the engine.
app = Chatnificent(engine=CustomEngine())
```
## Architecture Overview
How the pillars work together during a request:
1. **User Input**: The user submits a message via the `Layout`.
2. **Callback Trigger**: A Dash callback delegates the input to the `Engine`.
3. **Context Resolution**: The `Engine` uses `Auth`, `URL`, and `Store` to identify the user and load the conversation history.
4. **Agentic Loop**:
* The `Engine` calls `Retrieval` to gather context (RAG).
* The `Engine` sends the history and context to the `LLM`.
* If the `LLM` requests a tool call, the `Engine` executes it via `Tools` and loops back.
* If the `LLM` returns a final response, the loop exits.
5. **Persistence**: The `Engine` saves the updated conversation via the `Store`.
6. **Rendering**: The `Engine` formats the messages using the `Layout` and updates the client UI.
## Building Your Own Pillars
The ultimate hackability comes from implementing your own pillars. Want to use MongoDB? Just implement the `store.Store` interface.
### Example: Custom Storage Implementation
```python
from chatnificent import Chatnificent
import chatnificent as chat
from typing import Optional, List
class MongoDBStore(chat.store.Store):
def __init__(self, connection_string):
# Initialize MongoDB client...
print(f"Connecting to MongoDB at {connection_string}...")
pass
def load_conversation(self, user_id: str, convo_id: str) -> Optional[Conversation]:
# Implement loading logic...
return None
# Implement the other required methods...
def save_conversation(self, user_id: str, conversation: Conversation):
pass
def list_conversations(self, user_id: str) -> List[str]:
return []
def get_next_conversation_id(self, user_id: str) -> str:
return "1"
# Use your custom implementation
# app = Chatnificent(store=MongoDBStore(connection_string="mongodb://..."))
```
Raw data
{
"_id": null,
"home_page": null,
"name": "chatnificent",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "llm, chatbot, chat, ai, flask, dash, web-framework, openai, anthropic, conversational-ai",
"author": "Elias Dabbas",
"author_email": "Elias Dabbas <eliasdabbas@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/99/ba/f5b7e770e17095d06c90758d94b6565d53193fd675435f576cc09809df4c/chatnificent-0.0.6.tar.gz",
"platform": null,
"description": "\n\n# \ud83d\uddef\ufe0f Chatnificent\n\n### LLM chat app framework\n### Minimally complete. Maximally hackable.\n\nBuild production-ready, full-stack chat applications in minutes. Customize everything in hours.\n\n\nChatnificent is a Python framework built on [Plotly's Dash](https://dash.plotly.com/) designed to get your LLM chat applications up and running instantly, while providing a robust, decoupled architecture for unlimited customization.\n\nStop wrestling with UI components, state management, and backend integrations. Start building magnificent chat apps.\n\n\n[](https://pypi.python.org/pypi/chatnificent) [](http://pepy.tech/project/chatnificent) [](https://deepwiki.com/eliasdabbas/chatnificent)\n\n## The Ethos\n\nFrameworks should get out of your way.\n\n * **Minimally Complete:** Out of the box, `Chatnificent` provides a fully functional, stateful, multi-user chat application with sensible defaults.\n * **Maximally Hackable:** Every core pillar\u2014the UI, the LLM provider, the database, the authentication, the RAG pipeline, and the core orchestration\u2014is swappable. Customize or replace any part without fighting the framework.\n\n## Features\n\n * **LLM Agnostic:** Built-in support for OpenAI, Anthropic, Gemini, Ollama, OpenRouter, DeepSeek, and any other LLM API.\n * **Flexible UI:** Default Bootstrap layout, with built-in Mantine and Minimal (pure HTML) layouts. Easily customizable with any Dash components.\n * **Pluggable Storage:** InMemory, File-system, and SQLite included. Easily extendable to Redis, Postgres, etc.\n * **Agentic Engine:** The core engine manages multi-turn conversations and standardized tool calling across providers.\n * **Auth Ready:** Abstracted authentication layer for easy integration. No-login anonymous user auth enabled by default.\n * **RTL Support:** Automatic detection and rendering of Right-to-Left languages.\n * **Dash Native:** Leverage the full power of Plotly's Dash to integrate complex data visualizations and analytics.\n\n## Installation\n\nTo get started quickly with the default UI (Bootstrap) and the default LLM provider (OpenAI):\n\n```bash\npip install \"chatnificent[default]\"\n\nexport OPENAI_API_KEY=\"YOUR_API_KEY\"\n```\n\nFor a minimal installation (no UI libraries or LLM SDKs included):\n\n```bash\npip install chatnificent\n```\n\n\n\n## Quickstart: Hello World (3 Lines)\n\nThis is a complete, working chat application.\n\nCreate a file `app.py`:\n\n```python\nfrom chatnificent import Chatnificent\n\napp = Chatnificent()\n\nif __name__ == \"__main__\":\n app.run(debug=True)\n```\n\nRun it:\n\n```bash\npython app.py\n```\n\nOpen your browser to [`http://127.0.0.1:8050`](http://127.0.0.1:8050). That's it. You have a fully functional chat UI with conversation history, mobile responsiveness, and URL-based session management.\n\n## The Pillars of Hackability\n\nChatnificent's architecture is built around extensible Pillars. Every major function is handled by a dedicated component adhering to a strict interface.\n\n| Pillar | Description | Defaults | Included Implementations |\n| :--- | :--- | :--- | :--- |\n| **`LLM`** | The brain (API calls, parsing). | `OpenAI` (or `Echo`) | OpenAI, Anthropic, Gemini, OpenRouter, DeepSeek, Ollama, Echo |\n| **`Layout`** | The look and feel (UI components). | `Bootstrap` (or `Minimal`) | Bootstrap, Mantine, Minimal (HTML) |\n| **`Store`** | The memory (Persistence). | `InMemory` | InMemory, File, SQLite |\n| **`Auth`** | The gatekeeper (User identification). | `Anonymous` | Anonymous, SingleUser |\n| **`Engine`** | The orchestrator (Request lifecycle). | `Synchronous` | Synchronous |\n| **`Tools`** | Tool/function calling capabilities. | `NoTool` | PythonTool, NoTool |\n| **`Retrieval`** | RAG knowledge retrieval. | `NoRetrieval` | NoRetrieval |\n| **`URL`** | URL parsing and routing. | `PathBased` | PathBased, QueryParams |\n\nYou customize the app by injecting the implementations you need during initialization:\n\n```python\nfrom chatnificent import Chatnificent\nimport chatnificent as chat\n\napp = Chatnificent(\n llm=chat.llm.Anthropic(),\n store=chat.store.SQLite(db_path=\"conversations.db\"),\n layout=chat.layout.Mantine()\n)\n```\n\n## Progressive Power: Swapping the Pillars\n\nLet's evolve the \"Hello World\" example by swapping pillars.\n\n### Level 1: Swapping the LLM \ud83e\udde0\n\nWant to use Anthropic's Claude 3.5 Sonnet? Just swap the `llm` pillar.\n\n*(Requires `pip install anthropic` and setting `ANTHROPIC_API_KEY`)*\n\n```python\nfrom chatnificent import Chatnificent\nimport chatnificent as chat\n\n\napp = Chatnificent(\n llm=chat.llm.Anthropic(default_model=\"claude-3-5-sonnet-20240620\")\n)\n\n# Or try Gemini: app = Chatnificent(llm=chat.llm.Gemini())\n# Or local Ollama: app = Chatnificent(llm=chat.llm.Ollama(default_model=\"llama3.1\"))\n```\n\nChatnificent handles the translation of message formats and tool-calling protocols automatically.\n\n### Level 2: Adding Persistent Storage\n\nThe default `InMemory` store is ephemeral. Let's use `SQLite` for persistence.\n\n```python\nfrom chatnificent import Chatnificent\nimport chatnificent as chat\n\napp = Chatnificent(\n store=store.SQLite(db_path=\"conversations.db\")\n)\n# Or use the filesystem: store=chat.store.File(base_dir=\"./chat_data\")\n```\n\nConversations are now persisted across server restarts, and the sidebar automatically loads your history.\n\n### Level 3: Changing the Look and Feel \ud83c\udfa8\n\nDon't want Bootstrap? Let's try the Mantine layout.\n\n*(Requires `pip install dash-mantine-components`)*\n\n```python\nfrom chatnificent import Chatnificent\nimport chatnificent as chat\n\napp = Chatnificent(layout=chat.layout.Mantine())\n\n# Or use the barebones HTML layout: layout=layout.Minimal()\n```\n\nWant a completely custom design? Implement the `layout.Layout` abstract base class. The framework ensures your custom layout integrates seamlessly, provided you include the required component IDs (e.g., `input_textarea`, `messages_container`, etc.).\n\n### Level 4: Custom Authentication\n\nThe default `Anonymous` auth isolates users by random user ID. You can easily implement custom logic.\n\n```python\nfrom chatnificent import Chatnificent, auth\n\nclass HeaderAuth(auth.Auth):\n def get_current_user_id(self, **kwargs) -> str:\n from flask import request\n # Identify user based on a header (e.g., provided by an auth proxy)\n return request.headers.get(\"X-User-Id\", \"unknown_user\")\n\napp = Chatnificent(auth=HeaderAuth())\n```\n\n### Level 5: The Engine (Advanced Orchestration)\n\nThe `Engine` orchestrates the entire request lifecycle: resolving the conversation, RAG retrieval, the agentic loop (Tools + LLM calls), and persistence.\n\nThe default `Synchronous` engine provides \"hooks\" (empty methods called at specific points) and \"seams\" (core logic methods) that you can override to deeply customize behavior without rewriting the core logic.\n\n```python\nfrom chatnificent import Chatnificent\nimport chatnificent as chat\nfrom typing import Any, Optional\n\n# Create a custom engine by inheriting from the default\nclass CustomEngine(chat.engine.Synchronous):\n\n # 1. Override a HOOK to add monitoring/logging\n def _after_llm_call(self, llm_response: Any) -> None:\n # Example: Extract token usage if the LLM response object has a 'usage' attribute\n tokens = getattr(llm_response, 'usage', 'N/A')\n print(f\"[MONITORING] LLM call complete. Tokens: {tokens}\")\n\n # 2. Override a SEAM to modify core logic (e.g., prompt engineering)\n def _prepare_llm_payload(self, conversation, retrieval_context: Optional[str]):\n # Get the default payload (which already includes the context if present)\n payload = super()._prepare_llm_payload(conversation, retrieval_context)\n\n # Inject a custom system prompt if none exists\n if not any(m['role'] == 'system' for m in payload):\n payload.insert(0, {\"role\": \"system\", \"content\": \"Be brief and professional.\"})\n return payload\n\n\n# Initialize the app, passing the engine instance.\n# Chatnificent's constructor will automatically bind the app reference to the engine.\napp = Chatnificent(engine=CustomEngine())\n```\n\n## Architecture Overview\n\nHow the pillars work together during a request:\n\n1. **User Input**: The user submits a message via the `Layout`.\n2. **Callback Trigger**: A Dash callback delegates the input to the `Engine`.\n3. **Context Resolution**: The `Engine` uses `Auth`, `URL`, and `Store` to identify the user and load the conversation history.\n4. **Agentic Loop**:\n * The `Engine` calls `Retrieval` to gather context (RAG).\n * The `Engine` sends the history and context to the `LLM`.\n * If the `LLM` requests a tool call, the `Engine` executes it via `Tools` and loops back.\n * If the `LLM` returns a final response, the loop exits.\n5. **Persistence**: The `Engine` saves the updated conversation via the `Store`.\n6. **Rendering**: The `Engine` formats the messages using the `Layout` and updates the client UI.\n\n## Building Your Own Pillars\n\nThe ultimate hackability comes from implementing your own pillars. Want to use MongoDB? Just implement the `store.Store` interface.\n\n### Example: Custom Storage Implementation\n\n```python\nfrom chatnificent import Chatnificent\nimport chatnificent as chat\nfrom typing import Optional, List\n\nclass MongoDBStore(chat.store.Store):\n def __init__(self, connection_string):\n # Initialize MongoDB client...\n print(f\"Connecting to MongoDB at {connection_string}...\")\n pass\n\n def load_conversation(self, user_id: str, convo_id: str) -> Optional[Conversation]:\n # Implement loading logic...\n return None\n\n # Implement the other required methods...\n def save_conversation(self, user_id: str, conversation: Conversation):\n pass\n def list_conversations(self, user_id: str) -> List[str]:\n return []\n def get_next_conversation_id(self, user_id: str) -> str:\n return \"1\"\n\n# Use your custom implementation\n# app = Chatnificent(store=MongoDBStore(connection_string=\"mongodb://...\"))\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "LLM chat app framework - Minimally complete. Maximally hackable",
"version": "0.0.6",
"project_urls": {
"Bug Tracker": "https://github.com/eliasdabbas/chatnificent/issues",
"Homepage": "https://github.com/eliasdabbas/chatnificent",
"Repository": "https://github.com/eliasdabbas/chatnificent"
},
"split_keywords": [
"llm",
" chatbot",
" chat",
" ai",
" flask",
" dash",
" web-framework",
" openai",
" anthropic",
" conversational-ai"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "c57512342b247a6c279f498cad7e994e8c99e189d29767fe12225edf857a3987",
"md5": "0b9ebe173d7ef333f65d2855546dfc75",
"sha256": "c61104a10058966430c6bae0e67d5b8fb5fc2e8f976c2cae32bf631552d51dbc"
},
"downloads": -1,
"filename": "chatnificent-0.0.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0b9ebe173d7ef333f65d2855546dfc75",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 33959,
"upload_time": "2025-09-04T19:13:12",
"upload_time_iso_8601": "2025-09-04T19:13:12.136006Z",
"url": "https://files.pythonhosted.org/packages/c5/75/12342b247a6c279f498cad7e994e8c99e189d29767fe12225edf857a3987/chatnificent-0.0.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "99baf5b7e770e17095d06c90758d94b6565d53193fd675435f576cc09809df4c",
"md5": "964e9d4bd54683159cb1b4a109c440e1",
"sha256": "150716a7960333591fd8c67afe18d11c3a91ff1dd3ce627b6ccc1daefd97ca8f"
},
"downloads": -1,
"filename": "chatnificent-0.0.6.tar.gz",
"has_sig": false,
"md5_digest": "964e9d4bd54683159cb1b4a109c440e1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 29108,
"upload_time": "2025-09-04T19:13:14",
"upload_time_iso_8601": "2025-09-04T19:13:14.051183Z",
"url": "https://files.pythonhosted.org/packages/99/ba/f5b7e770e17095d06c90758d94b6565d53193fd675435f576cc09809df4c/chatnificent-0.0.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-04 19:13:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "eliasdabbas",
"github_project": "chatnificent",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "chatnificent"
}