Name | chebyfit JSON |
Version |
2024.5.24
JSON |
| download |
home_page | https://www.cgohlke.com |
Summary | Fit exponential and harmonic functions using Chebyshev polynomials |
upload_time | 2024-05-25 03:51:37 |
maintainer | None |
docs_url | None |
author | Christoph Gohlke |
requires_python | >=3.9 |
license | BSD |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
Fit exponential and harmonic functions using Chebyshev polynomials
==================================================================
Chebyfit is a Python library that implements the algorithms described in:
Analytic solutions to modelling exponential and harmonic functions using
Chebyshev polynomials: fitting frequency-domain lifetime images with
photobleaching. G C Malachowski, R M Clegg, and G I Redford.
J Microsc. 2007; 228(3): 282-295. doi: 10.1111/j.1365-2818.2007.01846.x
:Author: `Christoph Gohlke <https://www.cgohlke.com>`_
:License: BSD 3-Clause
:Version: 2024.5.24
Quickstart
----------
Install the chebyfit package and all dependencies from the
`Python Package Index <https://pypi.org/project/chebyfit/>`_::
python -m pip install -U chebyfit
See `Examples`_ for using the programming interface.
Source code and support are available on
`GitHub <https://github.com/cgohlke/chebyfit>`_.
Requirements
------------
This revision was tested with the following requirements and dependencies
(other versions may work):
- `CPython <https://www.python.org>`_ 3.9.13, 3.10.11, 3.11.9, 3.12.3
- `NumPy <https://pypi.org/project/numpy/>`_ 1.26.4
Revisions
---------
2024.5.24
- Fix docstring examples not correctly rendered on GitHub.
2024.4.24
- Support NumPy 2.
2024.1.6
- Support Python 3.12.
2023.4.22
- Drop support for Python 3.8 and numpy < 1.21 (NEP29).
2022.9.29
- Add type hints.
- Convert to Google style docstrings.
2022.8.26
- Update metadata.
- Remove support for Python 3.7 (NEP 29).
2021.6.6
- Fix compile error on Python 3.10.
- Remove support for Python 3.6 (NEP 29).
2020.1.1
- Remove support for Python 2.7 and 3.5.
2019.10.14
- Support Python 3.8.
- Fix numpy 1type FutureWarning.
2019.4.22
- Fix setup requirements.
2019.1.28
- Move modules into chebyfit package.
- Add Python wrapper for _chebyfit C extension module.
- Fix static analysis issues in _chebyfit.c.
Examples
--------
Fit two-exponential decay function:
>>> deltat = 0.5
>>> t = numpy.arange(0, 128, deltat)
>>> data = 1.1 + 2.2 * numpy.exp(-t / 33.3) + 4.4 * numpy.exp(-t / 55.5)
>>> params, fitted = fit_exponentials(data, numexps=2, deltat=deltat)
>>> numpy.allclose(data, fitted)
True
>>> params['offset']
array([1.1])
>>> params['amplitude']
array([[4.4, 2.2]])
>>> params['rate']
array([[55.5, 33.3]])
Fit harmonic function with exponential decay:
>>> tt = t * (2 * math.pi / (t[-1] + deltat))
>>> data = 1.1 + numpy.exp(-t / 22.2) * (
... 3.3 - 4.4 * numpy.sin(tt) + 5.5 * numpy.cos(tt)
... )
>>> params, fitted = fit_harmonic_decay(data, deltat=0.5)
>>> numpy.allclose(data, fitted)
True
>>> params['offset']
array([1.1])
>>> params['rate']
array([22.2])
>>> params['amplitude']
array([[3.3, 4.4, 5.5]])
Fit experimental time-domain image:
>>> data = numpy.fromfile('test.b&h', dtype='float32').reshape((256, 256, 256))
>>> data = data[64 : 64 + 64]
>>> params, fitted = fit_exponentials(data, numexps=1, numcoef=16, axis=0)
>>> numpy.allclose(data.sum(axis=0), fitted.sum(axis=0))
True
Raw data
{
"_id": null,
"home_page": "https://www.cgohlke.com",
"name": "chebyfit",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": null,
"author": "Christoph Gohlke",
"author_email": "cgohlke@cgohlke.com",
"download_url": "https://files.pythonhosted.org/packages/08/86/faf82e75277d77bad89a41e937eb2d265f93937e2b2762899b2cfd7a380d/chebyfit-2024.5.24.tar.gz",
"platform": "any",
"description": "Fit exponential and harmonic functions using Chebyshev polynomials\n==================================================================\n\nChebyfit is a Python library that implements the algorithms described in:\n\n Analytic solutions to modelling exponential and harmonic functions using\n Chebyshev polynomials: fitting frequency-domain lifetime images with\n photobleaching. G C Malachowski, R M Clegg, and G I Redford.\n J Microsc. 2007; 228(3): 282-295. doi: 10.1111/j.1365-2818.2007.01846.x\n\n:Author: `Christoph Gohlke <https://www.cgohlke.com>`_\n:License: BSD 3-Clause\n:Version: 2024.5.24\n\nQuickstart\n----------\n\nInstall the chebyfit package and all dependencies from the\n`Python Package Index <https://pypi.org/project/chebyfit/>`_::\n\n python -m pip install -U chebyfit\n\nSee `Examples`_ for using the programming interface.\n\nSource code and support are available on\n`GitHub <https://github.com/cgohlke/chebyfit>`_.\n\nRequirements\n------------\n\nThis revision was tested with the following requirements and dependencies\n(other versions may work):\n\n- `CPython <https://www.python.org>`_ 3.9.13, 3.10.11, 3.11.9, 3.12.3\n- `NumPy <https://pypi.org/project/numpy/>`_ 1.26.4\n\nRevisions\n---------\n\n2024.5.24\n\n- Fix docstring examples not correctly rendered on GitHub.\n\n2024.4.24\n\n- Support NumPy 2.\n\n2024.1.6\n\n- Support Python 3.12.\n\n2023.4.22\n\n- Drop support for Python 3.8 and numpy < 1.21 (NEP29).\n\n2022.9.29\n\n- Add type hints.\n- Convert to Google style docstrings.\n\n2022.8.26\n\n- Update metadata.\n- Remove support for Python 3.7 (NEP 29).\n\n2021.6.6\n\n- Fix compile error on Python 3.10.\n- Remove support for Python 3.6 (NEP 29).\n\n2020.1.1\n\n- Remove support for Python 2.7 and 3.5.\n\n2019.10.14\n\n- Support Python 3.8.\n- Fix numpy 1type FutureWarning.\n\n2019.4.22\n\n- Fix setup requirements.\n\n2019.1.28\n\n- Move modules into chebyfit package.\n- Add Python wrapper for _chebyfit C extension module.\n- Fix static analysis issues in _chebyfit.c.\n\nExamples\n--------\n\nFit two-exponential decay function:\n\n>>> deltat = 0.5\n>>> t = numpy.arange(0, 128, deltat)\n>>> data = 1.1 + 2.2 * numpy.exp(-t / 33.3) + 4.4 * numpy.exp(-t / 55.5)\n>>> params, fitted = fit_exponentials(data, numexps=2, deltat=deltat)\n>>> numpy.allclose(data, fitted)\nTrue\n>>> params['offset']\narray([1.1])\n>>> params['amplitude']\narray([[4.4, 2.2]])\n>>> params['rate']\narray([[55.5, 33.3]])\n\nFit harmonic function with exponential decay:\n\n>>> tt = t * (2 * math.pi / (t[-1] + deltat))\n>>> data = 1.1 + numpy.exp(-t / 22.2) * (\n... 3.3 - 4.4 * numpy.sin(tt) + 5.5 * numpy.cos(tt)\n... )\n>>> params, fitted = fit_harmonic_decay(data, deltat=0.5)\n>>> numpy.allclose(data, fitted)\nTrue\n>>> params['offset']\narray([1.1])\n>>> params['rate']\narray([22.2])\n>>> params['amplitude']\narray([[3.3, 4.4, 5.5]])\n\nFit experimental time-domain image:\n\n>>> data = numpy.fromfile('test.b&h', dtype='float32').reshape((256, 256, 256))\n>>> data = data[64 : 64 + 64]\n>>> params, fitted = fit_exponentials(data, numexps=1, numcoef=16, axis=0)\n>>> numpy.allclose(data.sum(axis=0), fitted.sum(axis=0))\nTrue\n",
"bugtrack_url": null,
"license": "BSD",
"summary": "Fit exponential and harmonic functions using Chebyshev polynomials",
"version": "2024.5.24",
"project_urls": {
"Bug Tracker": "https://github.com/cgohlke/chebyfit/issues",
"Homepage": "https://www.cgohlke.com",
"Source Code": "https://github.com/cgohlke/chebyfit"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "29fe50ba19160c2a6c40ff71473a16783c7cb463e5fe24102c6fb1cb87d94f16",
"md5": "aaaf7e21b75d872667e2c1668006565a",
"sha256": "df1320f558661da18f5dee3e6eaa91abffcaa3d4344a1fc5fa0337a7b81af7b4"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp310-cp310-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "aaaf7e21b75d872667e2c1668006565a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 33389,
"upload_time": "2024-05-25T03:51:06",
"upload_time_iso_8601": "2024-05-25T03:51:06.533921Z",
"url": "https://files.pythonhosted.org/packages/29/fe/50ba19160c2a6c40ff71473a16783c7cb463e5fe24102c6fb1cb87d94f16/chebyfit-2024.5.24-cp310-cp310-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a5a20c76d209003e66c3357afd09ff1aa0f04c689ec91a757956d7dc26a80c9d",
"md5": "f31dec1dd94daee5beaca520bae8d852",
"sha256": "dc1403dd61e4591fb7b5759d1be1c8103acbf934877c31398cdbd62530844611"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "f31dec1dd94daee5beaca520bae8d852",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 29916,
"upload_time": "2024-05-25T03:51:08",
"upload_time_iso_8601": "2024-05-25T03:51:08.388412Z",
"url": "https://files.pythonhosted.org/packages/a5/a2/0c76d209003e66c3357afd09ff1aa0f04c689ec91a757956d7dc26a80c9d/chebyfit-2024.5.24-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e292dc5cccf07af0d3798720c165ccd575af029af97236c0dd79af4a8b2b9f53",
"md5": "c6849735ef87b3679b96202f1c33744a",
"sha256": "29f1c6ae9f9ad4fdf38ad8af83e3e53925979c10d90620ff5f2331a457d5a911"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "c6849735ef87b3679b96202f1c33744a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 69495,
"upload_time": "2024-05-25T03:51:09",
"upload_time_iso_8601": "2024-05-25T03:51:09.375360Z",
"url": "https://files.pythonhosted.org/packages/e2/92/dc5cccf07af0d3798720c165ccd575af029af97236c0dd79af4a8b2b9f53/chebyfit-2024.5.24-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ad050168948f55cf7a04bfb2a5cd27cff533e4df4b255216ab178ec1e3f1d424",
"md5": "19ce368ba97cc91f6dd748f6e7d9b4b4",
"sha256": "41294749858479594a4a5d22789da223b40f4e13a4889d2091d46cca756722ce"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp310-cp310-win32.whl",
"has_sig": false,
"md5_digest": "19ce368ba97cc91f6dd748f6e7d9b4b4",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 25488,
"upload_time": "2024-05-25T03:51:10",
"upload_time_iso_8601": "2024-05-25T03:51:10.952885Z",
"url": "https://files.pythonhosted.org/packages/ad/05/0168948f55cf7a04bfb2a5cd27cff533e4df4b255216ab178ec1e3f1d424/chebyfit-2024.5.24-cp310-cp310-win32.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b118dfa9101797494db213b69c87e7893d26f158399e21b4ddf311f5b9ce4b2d",
"md5": "46e14353231ae20f7d7a85faa22892e9",
"sha256": "55275b40c9021664d45b21d626b190ab2bfac5be1a59b7e91c52b6b596e41c50"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "46e14353231ae20f7d7a85faa22892e9",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 28802,
"upload_time": "2024-05-25T03:51:12",
"upload_time_iso_8601": "2024-05-25T03:51:12.519061Z",
"url": "https://files.pythonhosted.org/packages/b1/18/dfa9101797494db213b69c87e7893d26f158399e21b4ddf311f5b9ce4b2d/chebyfit-2024.5.24-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ac4f2b7fbbed616ed56ef33fc8e623ff188a8b1eb01efa1d1ab9b97b3c84648d",
"md5": "49b459115a5bd735a95c75278fa7bbaf",
"sha256": "bc9ff499da6c34eb45f80493a31fac81037289a4307a690c709030f8206cfe85"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp311-cp311-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "49b459115a5bd735a95c75278fa7bbaf",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 33388,
"upload_time": "2024-05-25T03:51:14",
"upload_time_iso_8601": "2024-05-25T03:51:14.801134Z",
"url": "https://files.pythonhosted.org/packages/ac/4f/2b7fbbed616ed56ef33fc8e623ff188a8b1eb01efa1d1ab9b97b3c84648d/chebyfit-2024.5.24-cp311-cp311-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5f6a74059e70ab451000b583d06bcdeebc8a4e3ccb0ef441d070516e16d70a35",
"md5": "5fbca454bd912b3bc34e82cd9635b201",
"sha256": "910731675ea473e966aaf6045e739808c548fee55de6467072b3cb761c1a6177"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "5fbca454bd912b3bc34e82cd9635b201",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 29914,
"upload_time": "2024-05-25T03:51:16",
"upload_time_iso_8601": "2024-05-25T03:51:16.440922Z",
"url": "https://files.pythonhosted.org/packages/5f/6a/74059e70ab451000b583d06bcdeebc8a4e3ccb0ef441d070516e16d70a35/chebyfit-2024.5.24-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "02988d5041a376117271714017167499ce304c2cb4496a9a7fce2b78c82f6a37",
"md5": "91a9aa3deee4f24d075a59940f0cee7c",
"sha256": "7e50e323c5f50c4d985e0059194ef9208214ca919234c43c4f0ef023d1b472a5"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "91a9aa3deee4f24d075a59940f0cee7c",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 70321,
"upload_time": "2024-05-25T03:51:17",
"upload_time_iso_8601": "2024-05-25T03:51:17.954715Z",
"url": "https://files.pythonhosted.org/packages/02/98/8d5041a376117271714017167499ce304c2cb4496a9a7fce2b78c82f6a37/chebyfit-2024.5.24-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e5189425ede5e3da9a14c7e3a36ccafb4c31c04023fe279d9710505f8abdbbe6",
"md5": "dd12b9d366a286aafdc727b5d92834f7",
"sha256": "66a40535d3543edc167e2aa7f1c4921e7592dbbb89c714e7cc7376fb7fff5570"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp311-cp311-win32.whl",
"has_sig": false,
"md5_digest": "dd12b9d366a286aafdc727b5d92834f7",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 25494,
"upload_time": "2024-05-25T03:51:19",
"upload_time_iso_8601": "2024-05-25T03:51:19.762094Z",
"url": "https://files.pythonhosted.org/packages/e5/18/9425ede5e3da9a14c7e3a36ccafb4c31c04023fe279d9710505f8abdbbe6/chebyfit-2024.5.24-cp311-cp311-win32.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "74f77e771594faa88f6d8e78b1b2439bbb13c8ad6916f633d478044d07fc71a6",
"md5": "60b6f4ec6dc5ad56c3ea3f662085a0c6",
"sha256": "034ddf36d6da53aad98ed067b484ddbaba19ce925e5713c13ccdfba2cfd3a4eb"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "60b6f4ec6dc5ad56c3ea3f662085a0c6",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 28805,
"upload_time": "2024-05-25T03:51:21",
"upload_time_iso_8601": "2024-05-25T03:51:21.263516Z",
"url": "https://files.pythonhosted.org/packages/74/f7/7e771594faa88f6d8e78b1b2439bbb13c8ad6916f633d478044d07fc71a6/chebyfit-2024.5.24-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ffa0798a52e45766048a312be0a57327fdc3936c0b3f032650a38d1b081ea2aa",
"md5": "5f85e1a3bb8e86c5c21c056e82b0a6ce",
"sha256": "226722b3ba120ddf1db32dbe7a296ce0ae75f492286d6fc344420db0be57c47e"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp311-cp311-win_arm64.whl",
"has_sig": false,
"md5_digest": "5f85e1a3bb8e86c5c21c056e82b0a6ce",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.9",
"size": 23352,
"upload_time": "2024-05-25T03:51:23",
"upload_time_iso_8601": "2024-05-25T03:51:23.321503Z",
"url": "https://files.pythonhosted.org/packages/ff/a0/798a52e45766048a312be0a57327fdc3936c0b3f032650a38d1b081ea2aa/chebyfit-2024.5.24-cp311-cp311-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "666445bfe89bfd51325b1f31d6d04bbbfab68df3680d2713493bc96f1ecb36a9",
"md5": "296b5c16117108a2970240852c004f7c",
"sha256": "b225fcbe06bd2c22533b203421033f82c224c87fb86f3863995ed6bcb3099938"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp312-cp312-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "296b5c16117108a2970240852c004f7c",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 33477,
"upload_time": "2024-05-25T03:51:24",
"upload_time_iso_8601": "2024-05-25T03:51:24.914286Z",
"url": "https://files.pythonhosted.org/packages/66/64/45bfe89bfd51325b1f31d6d04bbbfab68df3680d2713493bc96f1ecb36a9/chebyfit-2024.5.24-cp312-cp312-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c5d0773a25f01df8e1f053aba0f0d762c9cae12049302447414eb828b5b18312",
"md5": "b42775664307411d93e2d61fb5de48d8",
"sha256": "6e92d0cbaa1b6ad92a1b0f5e8bc5aa2b3afa285a4b9f65ec884209610f2eaed4"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "b42775664307411d93e2d61fb5de48d8",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 29974,
"upload_time": "2024-05-25T03:51:26",
"upload_time_iso_8601": "2024-05-25T03:51:26.125912Z",
"url": "https://files.pythonhosted.org/packages/c5/d0/773a25f01df8e1f053aba0f0d762c9cae12049302447414eb828b5b18312/chebyfit-2024.5.24-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e0734c5add9eba40666c81eada5e41f9c2c127e888213f63859f9033f78e3c6e",
"md5": "7e91e6d32974953185f98e9fb1a26f93",
"sha256": "4a40789fd4cee3b18aa44cc6f6775ca1dff5e17e0c94f0c11b300116254a8e6e"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "7e91e6d32974953185f98e9fb1a26f93",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 71206,
"upload_time": "2024-05-25T03:51:27",
"upload_time_iso_8601": "2024-05-25T03:51:27.038916Z",
"url": "https://files.pythonhosted.org/packages/e0/73/4c5add9eba40666c81eada5e41f9c2c127e888213f63859f9033f78e3c6e/chebyfit-2024.5.24-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "bb4efa93b2604d3d156692ac6c0ad9cebe2c9cb2603ba4aa805391cc00efcd0c",
"md5": "acc2e367d135e96a6a68eca39e143927",
"sha256": "013d4528d8f251a1bc6e85d787469ec1091585860f2723f43e10f693cf3a69a3"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp312-cp312-win32.whl",
"has_sig": false,
"md5_digest": "acc2e367d135e96a6a68eca39e143927",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 25580,
"upload_time": "2024-05-25T03:51:28",
"upload_time_iso_8601": "2024-05-25T03:51:28.084575Z",
"url": "https://files.pythonhosted.org/packages/bb/4e/fa93b2604d3d156692ac6c0ad9cebe2c9cb2603ba4aa805391cc00efcd0c/chebyfit-2024.5.24-cp312-cp312-win32.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "31853946d9816b3dab0662dc20697fd57d0f762347d216e22e8602cd0c8754ed",
"md5": "20d14705be6ebec0b3711463b8ea2f2a",
"sha256": "70a69b1b53faf57c37eac881e35bf186c01482b799b234d21d8b58439578b501"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "20d14705be6ebec0b3711463b8ea2f2a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 28821,
"upload_time": "2024-05-25T03:51:29",
"upload_time_iso_8601": "2024-05-25T03:51:29.598427Z",
"url": "https://files.pythonhosted.org/packages/31/85/3946d9816b3dab0662dc20697fd57d0f762347d216e22e8602cd0c8754ed/chebyfit-2024.5.24-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8edd40161b410747964f6025247fa16b3a5e1d0b21fabf75fe1a8bc82a4c3258",
"md5": "1cb25a4e5e81aabf4154ceff3b0de485",
"sha256": "d64b2d1f785a6893596ea524690b7cfac8369ebb2b9ec98172d66f2c0314f5da"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp312-cp312-win_arm64.whl",
"has_sig": false,
"md5_digest": "1cb25a4e5e81aabf4154ceff3b0de485",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.9",
"size": 23466,
"upload_time": "2024-05-25T03:51:30",
"upload_time_iso_8601": "2024-05-25T03:51:30.530258Z",
"url": "https://files.pythonhosted.org/packages/8e/dd/40161b410747964f6025247fa16b3a5e1d0b21fabf75fe1a8bc82a4c3258/chebyfit-2024.5.24-cp312-cp312-win_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "98a9580b3a14e7b2ab6cb43fc86df60be83a2e6e41b2156f95de8587ee032548",
"md5": "1f4078db0b938160f798021647a15c69",
"sha256": "58aaff3862bdabc1ddf8321709eed18a240cfc41fab0ba9b0bfdaca3b8b46ce1"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "1f4078db0b938160f798021647a15c69",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 33379,
"upload_time": "2024-05-25T03:51:32",
"upload_time_iso_8601": "2024-05-25T03:51:32.024763Z",
"url": "https://files.pythonhosted.org/packages/98/a9/580b3a14e7b2ab6cb43fc86df60be83a2e6e41b2156f95de8587ee032548/chebyfit-2024.5.24-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "67347944dce6b7aa843677840454041b99762c86473a0c42a474ddad31ad7daa",
"md5": "f40dacc3b30e9d03b56e9928f05412bc",
"sha256": "2e005878da1d1a9b08caf5121ecd7cda1faab7e007a7bc00cd8062e4d07202f3"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "f40dacc3b30e9d03b56e9928f05412bc",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 29912,
"upload_time": "2024-05-25T03:51:32",
"upload_time_iso_8601": "2024-05-25T03:51:32.938198Z",
"url": "https://files.pythonhosted.org/packages/67/34/7944dce6b7aa843677840454041b99762c86473a0c42a474ddad31ad7daa/chebyfit-2024.5.24-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "95553217507c5d87d6b7d7031d9abee14c01a89242457d2346cd91b45abfa0a6",
"md5": "0c915254a2d88d9a0be73f72cff50e82",
"sha256": "0363cb01330a42ceef02d4cba147f245cb5c70e809b0d9b91f74dcd162a0f377"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "0c915254a2d88d9a0be73f72cff50e82",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 69228,
"upload_time": "2024-05-25T03:51:33",
"upload_time_iso_8601": "2024-05-25T03:51:33.874586Z",
"url": "https://files.pythonhosted.org/packages/95/55/3217507c5d87d6b7d7031d9abee14c01a89242457d2346cd91b45abfa0a6/chebyfit-2024.5.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1ad3d1c7636dab619f841d4bd1ede9ea18fc942d0ae6fb5cdf0997f7c821a368",
"md5": "643ef81df789239818f806d594de7287",
"sha256": "533bed369c5b25ea4913569ab4fd729682ff470661197feed1a92a5a8726d2bb"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp39-cp39-win32.whl",
"has_sig": false,
"md5_digest": "643ef81df789239818f806d594de7287",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 25486,
"upload_time": "2024-05-25T03:51:35",
"upload_time_iso_8601": "2024-05-25T03:51:35.494739Z",
"url": "https://files.pythonhosted.org/packages/1a/d3/d1c7636dab619f841d4bd1ede9ea18fc942d0ae6fb5cdf0997f7c821a368/chebyfit-2024.5.24-cp39-cp39-win32.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6fcf943fbc90aebd9c16b6846738631a193765e59742faa070b89b5e0fc41d03",
"md5": "bef9fe201ae045599dc006f54f7fa425",
"sha256": "831296cb347f96f626c4a03e3f48fe51577e4b1ae5ebec5bc5e52a8ad837fc55"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "bef9fe201ae045599dc006f54f7fa425",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 28794,
"upload_time": "2024-05-25T03:51:36",
"upload_time_iso_8601": "2024-05-25T03:51:36.944156Z",
"url": "https://files.pythonhosted.org/packages/6f/cf/943fbc90aebd9c16b6846738631a193765e59742faa070b89b5e0fc41d03/chebyfit-2024.5.24-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0886faf82e75277d77bad89a41e937eb2d265f93937e2b2762899b2cfd7a380d",
"md5": "384718506771556e46617930a4de16a3",
"sha256": "3f4dd5b8d3b4e09ca0802a127b41afa2c9774a779061b9c6dbcb5bda51928f20"
},
"downloads": -1,
"filename": "chebyfit-2024.5.24.tar.gz",
"has_sig": false,
"md5_digest": "384718506771556e46617930a4de16a3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 18024,
"upload_time": "2024-05-25T03:51:37",
"upload_time_iso_8601": "2024-05-25T03:51:37.919811Z",
"url": "https://files.pythonhosted.org/packages/08/86/faf82e75277d77bad89a41e937eb2d265f93937e2b2762899b2cfd7a380d/chebyfit-2024.5.24.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-25 03:51:37",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "cgohlke",
"github_project": "chebyfit",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "chebyfit"
}