chemicalmotifidentifier


Namechemicalmotifidentifier JSON
Version 0.0.10 PyPI version JSON
download
home_pagehttps://github.com/killiansheriff/ChemicalMotifIdentifier
SummaryChemical Motif Identifier
upload_time2025-07-19 01:49:07
maintainerNone
docs_urlNone
authorKillian Sheriff
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ChemicalMotifIdentifier
![PyPI Version](https://img.shields.io/pypi/v/chemicalmotifidentifier.svg) ![PyPI Downloads](https://static.pepy.tech/badge/chemicalmotifidentifier)

This repository contains the codes necessary to perform a chemical-motif characterization of short-range order, as described in our [Quantifying chemical short-range order in metallic alloys](https://www.pnas.org/doi/abs/10.1073/pnas.2322962121) paper and our [Chemical-motif characterization of short-range order using E(3)-equivariant graph neural networks](https://www.nature.com/articles/s41524-024-01393-5) paper. 

This framework allows for correlating any per-atom property to their local chemical motif. It also allows for the determination of predictive short-range chemical fluctuations length scale. It is based on E(3)-equivariant graph neural networks. Our framework has 100% accuracy in the identification of *any* motif that could ever be found in an fcc, bcc, or hcp solid solution with up to 5 chemical elements.  

![](assets/figure_2.png)

## Instalation 

```bash
# To install the latest PyPi release
pip install --upgrade chemicalmotifidentifier

# To install the latest git commit 
pip install --upgrade git+https://github.com/killiansheriff/ChemicalMotifIdentifier.git
```

You will also need to install ``torch``, ``torch_scatter`` and ``torch_geometric``.

## Example of usage

A jupyter notebook presenting a few test cases can be found in the [examples/](examples/) folder.

## References & Citing
If you use this repository in your work, please cite:

```
@article{sheriffquantifying2024,
	title = {Quantifying chemical short-range order in metallic alloys},
	doi = {10.1073/pnas.2322962121},
	journaltitle = {Proceedings of the National Academy of Sciences},
	author = {Sheriff, Killian and Cao, Yifan and Smidt, Tess and Freitas, Rodrigo},
	date = {2024-06-18},
}
```

and 

```
@article{sheriff2024chemicalmotif,
  title = {Chemical-motif characterization of short-range order with E(3)-equivariant graph neural networks},
  DOI = {10.1038/s41524-024-01393-5},
  journal = {npj Computational Materials},
  author = {Sheriff,  Killian and Cao,  Yifan and Freitas,  Rodrigo},
  year = {2024},
  month = sep,
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/killiansheriff/ChemicalMotifIdentifier",
    "name": "chemicalmotifidentifier",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Killian Sheriff",
    "author_email": "ksheriff@mit.edu",
    "download_url": "https://files.pythonhosted.org/packages/15/d5/4d8f2ac0990711ba83b99519f67024cbfd03e91a665eb79e754764deb61c/chemicalmotifidentifier-0.0.10.tar.gz",
    "platform": null,
    "description": "# ChemicalMotifIdentifier\n![PyPI Version](https://img.shields.io/pypi/v/chemicalmotifidentifier.svg) ![PyPI Downloads](https://static.pepy.tech/badge/chemicalmotifidentifier)\n\nThis repository contains the codes necessary to perform a chemical-motif characterization of short-range order, as described in our [Quantifying chemical short-range order in metallic alloys](https://www.pnas.org/doi/abs/10.1073/pnas.2322962121) paper and our [Chemical-motif characterization of short-range order using E(3)-equivariant graph neural networks](https://www.nature.com/articles/s41524-024-01393-5) paper. \n\nThis framework allows for correlating any per-atom property to their local chemical motif. It also allows for the determination of predictive short-range chemical fluctuations length scale. It is based on E(3)-equivariant graph neural networks. Our framework has 100% accuracy in the identification of *any* motif that could ever be found in an fcc, bcc, or hcp solid solution with up to 5 chemical elements.  \n\n![](assets/figure_2.png)\n\n## Instalation \n\n```bash\n# To install the latest PyPi release\npip install --upgrade chemicalmotifidentifier\n\n# To install the latest git commit \npip install --upgrade git+https://github.com/killiansheriff/ChemicalMotifIdentifier.git\n```\n\nYou will also need to install ``torch``, ``torch_scatter`` and ``torch_geometric``.\n\n## Example of usage\n\nA jupyter notebook presenting a few test cases can be found in the [examples/](examples/) folder.\n\n## References & Citing\nIf you use this repository in your work, please cite:\n\n```\n@article{sheriffquantifying2024,\n\ttitle = {Quantifying chemical short-range order in metallic alloys},\n\tdoi = {10.1073/pnas.2322962121},\n\tjournaltitle = {Proceedings of the National Academy of Sciences},\n\tauthor = {Sheriff, Killian and Cao, Yifan and Smidt, Tess and Freitas, Rodrigo},\n\tdate = {2024-06-18},\n}\n```\n\nand \n\n```\n@article{sheriff2024chemicalmotif,\n  title = {Chemical-motif characterization of short-range order with E(3)-equivariant graph neural networks},\n  DOI = {10.1038/s41524-024-01393-5},\n  journal = {npj Computational Materials},\n  author = {Sheriff,  Killian and Cao,  Yifan and Freitas,  Rodrigo},\n  year = {2024},\n  month = sep,\n}\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Chemical Motif Identifier",
    "version": "0.0.10",
    "project_urls": {
        "Homepage": "https://github.com/killiansheriff/ChemicalMotifIdentifier"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e9af857ffd3a96db4bf9a50ed79a0635ef15553b7b642c4ca6c18fdacf3db36c",
                "md5": "4afb64563a4743d01d93b116ae4a0294",
                "sha256": "0c22b01e753946d8d17d8224deefae1e255a6bf4b621ae541b1d05802530506e"
            },
            "downloads": -1,
            "filename": "chemicalmotifidentifier-0.0.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4afb64563a4743d01d93b116ae4a0294",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 36342,
            "upload_time": "2025-07-19T01:49:05",
            "upload_time_iso_8601": "2025-07-19T01:49:05.851712Z",
            "url": "https://files.pythonhosted.org/packages/e9/af/857ffd3a96db4bf9a50ed79a0635ef15553b7b642c4ca6c18fdacf3db36c/chemicalmotifidentifier-0.0.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "15d54d8f2ac0990711ba83b99519f67024cbfd03e91a665eb79e754764deb61c",
                "md5": "d708fd1f8232af91d4a9c5da7099e64b",
                "sha256": "7eb0295d50d10746d5dc4d18df530af3752929f36a5e06b384d7b1e5c12aeb44"
            },
            "downloads": -1,
            "filename": "chemicalmotifidentifier-0.0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "d708fd1f8232af91d4a9c5da7099e64b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 33489,
            "upload_time": "2025-07-19T01:49:07",
            "upload_time_iso_8601": "2025-07-19T01:49:07.097596Z",
            "url": "https://files.pythonhosted.org/packages/15/d5/4d8f2ac0990711ba83b99519f67024cbfd03e91a665eb79e754764deb61c/chemicalmotifidentifier-0.0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-19 01:49:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "killiansheriff",
    "github_project": "ChemicalMotifIdentifier",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "chemicalmotifidentifier"
}
        
Elapsed time: 1.02994s