chi2sim


Namechi2sim JSON
Version 1.0.2.3 PyPI version JSON
download
home_pageNone
SummaryChi-square test with Monte Carlo simulation
upload_time2024-10-30 04:43:03
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseNone
keywords statistics chi-square monte-carlo simulation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # chi2sim

Chi-square test with Monte Carlo simulation for contingency tables.
The package and its documentation are still under construction.

## Description

The `chi2sim` package is a Python implementation that contains the translation of R's H tests for contingency tables when `simulate.p.value = TRUE`, originally written in C and based on Patefield's (1981) FORTRAN algorithm. The package provides a fast and reliable method to compute p-values for chi-square tests using Monte Carlo simulation.

## Installation

```bash
pip install chi2sim
```

## Usage

```python
import numpy as np
from chi2sim import chi2_cont_sim

# Example contingency table
table = np.array([
    [10, 5],
    [20, 15]
], dtype=int)

# Perform chi-square test with Monte Carlo simulation
result = chi2_cont_sim(table)
print(result)
```

## Features

- Similar to SciPy's `scipy.stats.chi2_contingency`, but returns 
- Monte Carlo simulation for p-value approximation
- Easy-to-use Python interface

## Requirements

- Python >= 3.9
- NumPy >= 1.15.0

## License

This project is licensed under the MIT License - see the LICENSE file for details.


## Citation

If you use the `chi2sim` package in your study, please don't forget to cite the following literatures:

-  Hope, A. C. A. (1968). A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society Series B, 30, 582–598. doi:10.1111/j.2517-6161.1968.tb00759.x.

-  Patefield, W. M. (1981). Algorithm AS 159: An efficient method of generating r x c tables with given row and column totals. Applied Statistics, 30, 91–97. doi:10.2307/2346669.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "chi2sim",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "statistics, chi-square, monte-carlo, simulation",
    "author": null,
    "author_email": "Joshua Marie Ongcoy <joshstat126@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/a9/bd/97445e76803142507bfe17e993d79af1dc181d9ca46d216657c2a2575c94/chi2sim-1.0.2.3.tar.gz",
    "platform": null,
    "description": "# chi2sim\r\n\r\nChi-square test with Monte Carlo simulation for contingency tables.\r\nThe package and its documentation are still under construction.\r\n\r\n## Description\r\n\r\nThe `chi2sim` package is a Python implementation that contains the translation of R's H tests for contingency tables when `simulate.p.value = TRUE`, originally written in C and based on Patefield's (1981) FORTRAN algorithm. The package provides a fast and reliable method to compute p-values for chi-square tests using Monte Carlo simulation.\r\n\r\n## Installation\r\n\r\n```bash\r\npip install chi2sim\r\n```\r\n\r\n## Usage\r\n\r\n```python\r\nimport numpy as np\r\nfrom chi2sim import chi2_cont_sim\r\n\r\n# Example contingency table\r\ntable = np.array([\r\n    [10, 5],\r\n    [20, 15]\r\n], dtype=int)\r\n\r\n# Perform chi-square test with Monte Carlo simulation\r\nresult = chi2_cont_sim(table)\r\nprint(result)\r\n```\r\n\r\n## Features\r\n\r\n- Similar to SciPy's `scipy.stats.chi2_contingency`, but returns \r\n- Monte Carlo simulation for p-value approximation\r\n- Easy-to-use Python interface\r\n\r\n## Requirements\r\n\r\n- Python >= 3.9\r\n- NumPy >= 1.15.0\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License - see the LICENSE file for details.\r\n\r\n\r\n## Citation\r\n\r\nIf you use the `chi2sim` package in your study, please don't forget to cite the following literatures:\r\n\r\n-  Hope, A. C. A. (1968). A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society Series B, 30, 582\u2013598. doi:10.1111/j.2517-6161.1968.tb00759.x.\r\n\r\n-  Patefield, W. M. (1981). Algorithm AS 159: An efficient method of generating r x c tables with given row and column totals. Applied Statistics, 30, 91\u201397. doi:10.2307/2346669.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Chi-square test with Monte Carlo simulation",
    "version": "1.0.2.3",
    "project_urls": {
        "Bug Tracker": "https://github.com/kisha126/chi2sim/issues",
        "Documentation": "https://github.com/kisha126/chi2sim#readme",
        "Homepage": "https://github.com/kisha126/chi2sim"
    },
    "split_keywords": [
        "statistics",
        " chi-square",
        " monte-carlo",
        " simulation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0746f372f9bd77016d8a5440f84fa859a8497bf520c5f694f39f34d34a676278",
                "md5": "7dd91da640b75f5ce21c8f6fa2495667",
                "sha256": "84d185cda051e5d3b90b7593e77d9803ca453b4d77cf8817e37efbea488a74ab"
            },
            "downloads": -1,
            "filename": "chi2sim-1.0.2.3-cp311-cp311-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "7dd91da640b75f5ce21c8f6fa2495667",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.7",
            "size": 100493,
            "upload_time": "2024-10-30T04:43:00",
            "upload_time_iso_8601": "2024-10-30T04:43:00.117857Z",
            "url": "https://files.pythonhosted.org/packages/07/46/f372f9bd77016d8a5440f84fa859a8497bf520c5f694f39f34d34a676278/chi2sim-1.0.2.3-cp311-cp311-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a9bd97445e76803142507bfe17e993d79af1dc181d9ca46d216657c2a2575c94",
                "md5": "36bbd2916a4a56a406a590b2c2a48377",
                "sha256": "ac7f22837c56d8e0572b9338be4cdc566ecc8f10a16cd1c6926d4677d0d7a491"
            },
            "downloads": -1,
            "filename": "chi2sim-1.0.2.3.tar.gz",
            "has_sig": false,
            "md5_digest": "36bbd2916a4a56a406a590b2c2a48377",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 72755,
            "upload_time": "2024-10-30T04:43:03",
            "upload_time_iso_8601": "2024-10-30T04:43:03.080876Z",
            "url": "https://files.pythonhosted.org/packages/a9/bd/97445e76803142507bfe17e993d79af1dc181d9ca46d216657c2a2575c94/chi2sim-1.0.2.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-30 04:43:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kisha126",
    "github_project": "chi2sim",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "chi2sim"
}
        
Elapsed time: 0.59947s