chiralfinder


Namechiralfinder JSON
Version 0.1.4 PyPI version JSON
download
home_pagehttps://github.com/Meteor-han/chiralfinder/
SummaryThe chiralfinder package.
upload_time2024-11-27 13:33:21
maintainerRunhan Shi
docs_urlNone
authorRunhan Shi
requires_python<4.0,>=3.8
licenseMIT
keywords chirality chiral axis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # chiralfinder

Data and codes for the paper "ChiralFinder: an Open-Source Tool for Precise Stereogenic Element Detection and Stereoisomer Discrimination", in submission.

## Quick use

Install Anaconda, create and enter your own environment like

    conda create -n env_test python=3.10
Enter the conda environment and install the ChiralFinder package through pip like

```
conda activate env_test
pip install chiralfinder
```

Run `test.py` to get example results.

```
python test.py
```

```python
from chiralfinder import ChiralFinder

if __name__ == '__main__':
    smi_list = ["C[C@H]1CC(=O)[C@]2(CCCC2=O)C1", "CC1=CC=C(SC2=C(C)N(C3=CC=CC=C3C(C)(C)C)C(C)=C2)C=C1"]

    chiral_finder = ChiralFinder(smi_list, "SMILES")
    res_ = chiral_finder.get_axial(n_cpus=8)
    print(res_[0]["chiral axes"], res_[1]["chiral axes"])
    chiral_finder.draw_res_axial("./img")

    smi_list_center = ["BrC/C(=C\[C@@H]1CCCO1)C1CCCCC1"]
    chiral_finder = ChiralFinder(smi_list_center, "SMILES")
    res_ = chiral_finder.get_central()
    print(res_)
```

You will get the images of two molecules with predicted chiral axes in the folder `./img` by default. Predicted chiral axes:

```
[(5,)] [(9, 10)]
```

<img src="https://github.com/Meteor-han/chiralfinder/blob/main/img_axial/0.png" alt="0" width="30%" height="auto" /><img src="https://github.com/Meteor-han/chiralfinder/blob/main/img_axial/1.png" alt="1"  width="30%" height="auto" />

You will get the prediction of one molecule for central chirality.

```
[{
'center id': [4], 
'quadrupole matrix': 
       [[array([[-0.29989323, -1.08474687,  0.09943544],
       [-2.0754821 ,  0.47857598,  1.02051223],
       [-0.0064714 , -0.03258116,  2.29906673]])]], 
'determinant': [[-5.501797575969392]], 
'sign': [[-1.0]]
}]
```




## The RotA dataset

The RotA dataset in excel with labeled chiral axes and some calculated molecular properties is stored in the folder `./data`.

## Citation

```
To be filled
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Meteor-han/chiralfinder/",
    "name": "chiralfinder",
    "maintainer": "Runhan Shi",
    "docs_url": null,
    "requires_python": "<4.0,>=3.8",
    "maintainer_email": "han.run.jiangming@sjtu.edu.cn",
    "keywords": "Chirality, Chiral axis",
    "author": "Runhan Shi",
    "author_email": "han.run.jiangming@sjtu.edu.cn",
    "download_url": "https://files.pythonhosted.org/packages/43/bb/4496f82001b9f994d3533db66bad9bab03b31ee690a6c66af95a9aaf9d92/chiralfinder-0.1.4.tar.gz",
    "platform": null,
    "description": "# chiralfinder\n\nData and codes for the paper \"ChiralFinder: an Open-Source Tool for Precise Stereogenic Element Detection and Stereoisomer Discrimination\", in submission.\n\n## Quick use\n\nInstall Anaconda, create and enter your own environment like\n\n    conda create -n env_test python=3.10\nEnter the conda environment and install the ChiralFinder package through pip like\n\n```\nconda activate env_test\npip install chiralfinder\n```\n\nRun `test.py` to get example results.\n\n```\npython test.py\n```\n\n```python\nfrom chiralfinder import ChiralFinder\n\nif __name__ == '__main__':\n    smi_list = [\"C[C@H]1CC(=O)[C@]2(CCCC2=O)C1\", \"CC1=CC=C(SC2=C(C)N(C3=CC=CC=C3C(C)(C)C)C(C)=C2)C=C1\"]\n\n    chiral_finder = ChiralFinder(smi_list, \"SMILES\")\n    res_ = chiral_finder.get_axial(n_cpus=8)\n    print(res_[0][\"chiral axes\"], res_[1][\"chiral axes\"])\n    chiral_finder.draw_res_axial(\"./img\")\n\n    smi_list_center = [\"BrC/C(=C\\[C@@H]1CCCO1)C1CCCCC1\"]\n    chiral_finder = ChiralFinder(smi_list_center, \"SMILES\")\n    res_ = chiral_finder.get_central()\n    print(res_)\n```\n\nYou will get the images of two molecules with predicted chiral axes in the folder `./img` by default. Predicted chiral axes:\n\n```\n[(5,)] [(9, 10)]\n```\n\n<img src=\"https://github.com/Meteor-han/chiralfinder/blob/main/img_axial/0.png\" alt=\"0\" width=\"30%\" height=\"auto\" /><img src=\"https://github.com/Meteor-han/chiralfinder/blob/main/img_axial/1.png\" alt=\"1\"  width=\"30%\" height=\"auto\" />\n\nYou will get the prediction of one molecule for central chirality.\n\n```\n[{\n'center id': [4], \n'quadrupole matrix': \n       [[array([[-0.29989323, -1.08474687,  0.09943544],\n       [-2.0754821 ,  0.47857598,  1.02051223],\n       [-0.0064714 , -0.03258116,  2.29906673]])]], \n'determinant': [[-5.501797575969392]], \n'sign': [[-1.0]]\n}]\n```\n\n\n\n\n## The RotA dataset\n\nThe RotA dataset in excel with labeled chiral axes and some calculated molecular properties is stored in the folder `./data`.\n\n## Citation\n\n```\nTo be filled\n```\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "The chiralfinder package.",
    "version": "0.1.4",
    "project_urls": {
        "Documentation": "https://github.com/Meteor-han/chiralfinder/",
        "Homepage": "https://github.com/Meteor-han/chiralfinder/",
        "Repository": "https://github.com/Meteor-han/chiralfinder/",
        "issues": "https://github.com/Meteor-han/chiralfinder/issues"
    },
    "split_keywords": [
        "chirality",
        " chiral axis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "04a33ddc0d43a10484f8f3d988be77b1fe7fa7b3484a142d94af680f66494928",
                "md5": "9e7a85c6ade7540a47ddf85294c8bb16",
                "sha256": "e9e337a590cca5df190cc90ea9116fc603ea06e161053fea47b8591e69e59717"
            },
            "downloads": -1,
            "filename": "chiralfinder-0.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9e7a85c6ade7540a47ddf85294c8bb16",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.8",
            "size": 17894,
            "upload_time": "2024-11-27T13:33:19",
            "upload_time_iso_8601": "2024-11-27T13:33:19.710956Z",
            "url": "https://files.pythonhosted.org/packages/04/a3/3ddc0d43a10484f8f3d988be77b1fe7fa7b3484a142d94af680f66494928/chiralfinder-0.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "43bb4496f82001b9f994d3533db66bad9bab03b31ee690a6c66af95a9aaf9d92",
                "md5": "4d68aa93b9e6c23db09ebe2fe93a03e5",
                "sha256": "805714e82dec8548520f0a9acef442927f7542a1f4fdbfbe557037710d40e734"
            },
            "downloads": -1,
            "filename": "chiralfinder-0.1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "4d68aa93b9e6c23db09ebe2fe93a03e5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.8",
            "size": 26927,
            "upload_time": "2024-11-27T13:33:21",
            "upload_time_iso_8601": "2024-11-27T13:33:21.610857Z",
            "url": "https://files.pythonhosted.org/packages/43/bb/4496f82001b9f994d3533db66bad9bab03b31ee690a6c66af95a9aaf9d92/chiralfinder-0.1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-27 13:33:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Meteor-han",
    "github_project": "chiralfinder",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "chiralfinder"
}
        
Elapsed time: 0.43797s