choix


Namechoix JSON
Version 0.3.6 PyPI version JSON
download
home_pagehttps://github.com/lucasmaystre/choix
SummaryInference algorithms for models based on Luce's choice axiom.
upload_time2024-12-04 11:19:00
maintainerNone
docs_urlNone
authorLucas Maystre
requires_pythonNone
licenseMIT
keywords statistics ml bradley terry plackett luce choice comparison ranking
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            choix
=====

|build-status| |coverage| |docs|

``choix`` is a Python library that provides inference algorithms for models
based on Luce's choice axiom. These probabilistic models can be used to explain
and predict outcomes of comparisons between items.

- **Pairwise comparisons**: when the data consists of comparisons between two
  items, the model variant is usually referred to as the *Bradley-Terry* model.
  It is closely related to the Elo rating system used to rank chess players.
- **Partial rankings**: when the data consists of rankings over (a subset of)
  the items, the model variant is usually referred to as the *Plackett-Luce*
  model.
- **Top-1 lists**: another variation of the model arises when the data consists
  of discrete choices, i.e., we observe the selection of one item out of a
  subset of items.
- **Choices in a network**: when the data consists of counts of the number of
  visits to each node in a network, the model is known as the *Network Choice
  Model*.

``choix`` makes it easy to infer model parameters from these different types of
data, using a variety of algorithms:

- Luce Spectral Ranking
- Minorization-Maximization
- Rank Centrality
- Approximate Bayesian inference with expectation propagation

Getting started
---------------

To install the latest release directly from PyPI, simply type::

    pip install choix

To get started, you might want to explore one of these notebooks:

- `Introduction using pairwise-comparison data
  <https://github.com/lucasmaystre/choix/blob/master/notebooks/intro-pairwise.ipynb>`_
- `Case study: analyzing the GIFGIF dataset
  <https://github.com/lucasmaystre/choix/blob/master/notebooks/gifgif-dataset.ipynb>`_
- `Using ChoiceRank to understand traffic on a network
  <https://github.com/lucasmaystre/choix/blob/master/notebooks/choicerank-tutorial.ipynb>`_
- `Approximate Bayesian inference using EP
  <https://github.com/lucasmaystre/choix/blob/master/notebooks/ep-example.ipynb>`_

You can also find more information on the `official documentation
<http://choix.lum.li/en/latest/>`_. In particular, the `API reference
<http://choix.lum.li/en/latest/api.html>`_ contains a good summary of the
library's features.

References
----------

- Hossein Azari Soufiani, William Z. Chen, David C. Parkes, and Lirong Xia,
  `Generalized Method-of-Moments for Rank Aggregation`_, NIPS 2013
- François Caron and Arnaud Doucet. `Efficient Bayesian Inference for
  Generalized Bradley-Terry models`_. Journal of Computational and Graphical
  Statistics, 21(1):174-196, 2012.
- Wei Chu and Zoubin Ghahramani, `Extensions of Gaussian processes for ranking\:
  semi-supervised and active learning`_, NIPS 2005 Workshop on Learning to
  Rank.
- David R. Hunter. `MM algorithms for generalized Bradley-Terry models`_, The
  Annals of Statistics 32(1):384-406, 2004.
- Ravi Kumar, Andrew Tomkins, Sergei Vassilvitskii and Erik Vee, `Inverting a
  Steady-State`_, WSDM 2015.
- Lucas Maystre and Matthias Grossglauser, `Fast and Accurate Inference of
  Plackett-Luce Models`_, NIPS, 2015.
- Lucas Maystre and M. Grossglauser, `ChoiceRank\: Identifying Preferences from
  Node Traffic in Networks`_, ICML 2017.
- Sahand Negahban, Sewoong Oh, and Devavrat Shah, `Iterative Ranking from
  Pair-wise Comparison`_, NIPS 2012.


.. _Generalized Method-of-Moments for Rank Aggregation:
   https://papers.nips.cc/paper/4997-generalized-method-of-moments-for-rank-aggregation.pdf

.. _Efficient Bayesian Inference for Generalized Bradley-Terry models:
   https://hal.inria.fr/inria-00533638/document

.. _Extensions of Gaussian processes for ranking\: semi-supervised and active learning:
   http://www.gatsby.ucl.ac.uk/~chuwei/paper/gprl.pdf

.. _MM algorithms for generalized Bradley-Terry models:
   http://sites.stat.psu.edu/~dhunter/papers/bt.pdf

.. _Inverting a Steady-State:
   http://theory.stanford.edu/~sergei/papers/wsdm15-cset.pdf

.. _Fast and Accurate Inference of Plackett-Luce Models:
   https://infoscience.epfl.ch/record/213486/files/fastinference.pdf

.. _ChoiceRank\: Identifying Preferences from Node Traffic in Networks:
   https://infoscience.epfl.ch/record/229164/files/choicerank.pdf

.. _Iterative Ranking from Pair-wise Comparison:
   https://papers.nips.cc/paper/4701-iterative-ranking-from-pair-wise-comparisons.pdf

.. |build-status| image:: https://api.travis-ci.com/lucasmaystre/choix.svg?branch=master
   :alt: build status
   :target: https://app.travis-ci.com/github/lucasmaystre/choix

.. |coverage| image:: https://codecov.io/gh/lucasmaystre/choix/branch/master/graph/badge.svg
   :alt: code coverage
   :target: https://codecov.io/gh/lucasmaystre/choix

.. |docs| image:: https://readthedocs.org/projects/choix/badge/?version=latest
   :alt: documentation status
   :target: http://choix.lum.li/en/latest/?badge=latest

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/lucasmaystre/choix",
    "name": "choix",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "statistics ml bradley terry plackett luce choice comparison ranking",
    "author": "Lucas Maystre",
    "author_email": "lucas@maystre.ch",
    "download_url": "https://files.pythonhosted.org/packages/78/7d/7c167af8bcecb10d931172506f169c0425e23fb1961165fc7a94e7d15ff4/choix-0.3.6.tar.gz",
    "platform": null,
    "description": "choix\n=====\n\n|build-status| |coverage| |docs|\n\n``choix`` is a Python library that provides inference algorithms for models\nbased on Luce's choice axiom. These probabilistic models can be used to explain\nand predict outcomes of comparisons between items.\n\n- **Pairwise comparisons**: when the data consists of comparisons between two\n  items, the model variant is usually referred to as the *Bradley-Terry* model.\n  It is closely related to the Elo rating system used to rank chess players.\n- **Partial rankings**: when the data consists of rankings over (a subset of)\n  the items, the model variant is usually referred to as the *Plackett-Luce*\n  model.\n- **Top-1 lists**: another variation of the model arises when the data consists\n  of discrete choices, i.e., we observe the selection of one item out of a\n  subset of items.\n- **Choices in a network**: when the data consists of counts of the number of\n  visits to each node in a network, the model is known as the *Network Choice\n  Model*.\n\n``choix`` makes it easy to infer model parameters from these different types of\ndata, using a variety of algorithms:\n\n- Luce Spectral Ranking\n- Minorization-Maximization\n- Rank Centrality\n- Approximate Bayesian inference with expectation propagation\n\nGetting started\n---------------\n\nTo install the latest release directly from PyPI, simply type::\n\n    pip install choix\n\nTo get started, you might want to explore one of these notebooks:\n\n- `Introduction using pairwise-comparison data\n  <https://github.com/lucasmaystre/choix/blob/master/notebooks/intro-pairwise.ipynb>`_\n- `Case study: analyzing the GIFGIF dataset\n  <https://github.com/lucasmaystre/choix/blob/master/notebooks/gifgif-dataset.ipynb>`_\n- `Using ChoiceRank to understand traffic on a network\n  <https://github.com/lucasmaystre/choix/blob/master/notebooks/choicerank-tutorial.ipynb>`_\n- `Approximate Bayesian inference using EP\n  <https://github.com/lucasmaystre/choix/blob/master/notebooks/ep-example.ipynb>`_\n\nYou can also find more information on the `official documentation\n<http://choix.lum.li/en/latest/>`_. In particular, the `API reference\n<http://choix.lum.li/en/latest/api.html>`_ contains a good summary of the\nlibrary's features.\n\nReferences\n----------\n\n- Hossein Azari Soufiani, William Z. Chen, David C. Parkes, and Lirong Xia,\n  `Generalized Method-of-Moments for Rank Aggregation`_, NIPS 2013\n- Fran\u00e7ois Caron and Arnaud Doucet. `Efficient Bayesian Inference for\n  Generalized Bradley-Terry models`_. Journal of Computational and Graphical\n  Statistics, 21(1):174-196, 2012.\n- Wei Chu and Zoubin Ghahramani, `Extensions of Gaussian processes for ranking\\:\n  semi-supervised and active learning`_, NIPS 2005 Workshop on Learning to\n  Rank.\n- David R. Hunter. `MM algorithms for generalized Bradley-Terry models`_, The\n  Annals of Statistics 32(1):384-406, 2004.\n- Ravi Kumar, Andrew Tomkins, Sergei Vassilvitskii and Erik Vee, `Inverting a\n  Steady-State`_, WSDM 2015.\n- Lucas Maystre and Matthias Grossglauser, `Fast and Accurate Inference of\n  Plackett-Luce Models`_, NIPS, 2015.\n- Lucas Maystre and M. Grossglauser, `ChoiceRank\\: Identifying Preferences from\n  Node Traffic in Networks`_, ICML 2017.\n- Sahand Negahban, Sewoong Oh, and Devavrat Shah, `Iterative Ranking from\n  Pair-wise Comparison`_, NIPS 2012.\n\n\n.. _Generalized Method-of-Moments for Rank Aggregation:\n   https://papers.nips.cc/paper/4997-generalized-method-of-moments-for-rank-aggregation.pdf\n\n.. _Efficient Bayesian Inference for Generalized Bradley-Terry models:\n   https://hal.inria.fr/inria-00533638/document\n\n.. _Extensions of Gaussian processes for ranking\\: semi-supervised and active learning:\n   http://www.gatsby.ucl.ac.uk/~chuwei/paper/gprl.pdf\n\n.. _MM algorithms for generalized Bradley-Terry models:\n   http://sites.stat.psu.edu/~dhunter/papers/bt.pdf\n\n.. _Inverting a Steady-State:\n   http://theory.stanford.edu/~sergei/papers/wsdm15-cset.pdf\n\n.. _Fast and Accurate Inference of Plackett-Luce Models:\n   https://infoscience.epfl.ch/record/213486/files/fastinference.pdf\n\n.. _ChoiceRank\\: Identifying Preferences from Node Traffic in Networks:\n   https://infoscience.epfl.ch/record/229164/files/choicerank.pdf\n\n.. _Iterative Ranking from Pair-wise Comparison:\n   https://papers.nips.cc/paper/4701-iterative-ranking-from-pair-wise-comparisons.pdf\n\n.. |build-status| image:: https://api.travis-ci.com/lucasmaystre/choix.svg?branch=master\n   :alt: build status\n   :target: https://app.travis-ci.com/github/lucasmaystre/choix\n\n.. |coverage| image:: https://codecov.io/gh/lucasmaystre/choix/branch/master/graph/badge.svg\n   :alt: code coverage\n   :target: https://codecov.io/gh/lucasmaystre/choix\n\n.. |docs| image:: https://readthedocs.org/projects/choix/badge/?version=latest\n   :alt: documentation status\n   :target: http://choix.lum.li/en/latest/?badge=latest\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Inference algorithms for models based on Luce's choice axiom.",
    "version": "0.3.6",
    "project_urls": {
        "Homepage": "https://github.com/lucasmaystre/choix"
    },
    "split_keywords": [
        "statistics",
        "ml",
        "bradley",
        "terry",
        "plackett",
        "luce",
        "choice",
        "comparison",
        "ranking"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8740bc37a13e12f9cd3d9d07727b370401075ef919e0676db362f87fca98463f",
                "md5": "61e330b432202e16576e353e65c76e05",
                "sha256": "c6efa5059540816e01d36977b5e49096fae5fdb7438b6cf3b91a54a781fb53a7"
            },
            "downloads": -1,
            "filename": "choix-0.3.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "61e330b432202e16576e353e65c76e05",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 18675,
            "upload_time": "2024-12-04T11:18:59",
            "upload_time_iso_8601": "2024-12-04T11:18:59.191122Z",
            "url": "https://files.pythonhosted.org/packages/87/40/bc37a13e12f9cd3d9d07727b370401075ef919e0676db362f87fca98463f/choix-0.3.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "787d7c167af8bcecb10d931172506f169c0425e23fb1961165fc7a94e7d15ff4",
                "md5": "3d23a69658100d3d9649eba753795284",
                "sha256": "08d50eef29d0a5a33aedcf6939783144ee141b736e4616ba2e0db835df8c81b2"
            },
            "downloads": -1,
            "filename": "choix-0.3.6.tar.gz",
            "has_sig": false,
            "md5_digest": "3d23a69658100d3d9649eba753795284",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 72563,
            "upload_time": "2024-12-04T11:19:00",
            "upload_time_iso_8601": "2024-12-04T11:19:00.748801Z",
            "url": "https://files.pythonhosted.org/packages/78/7d/7c167af8bcecb10d931172506f169c0425e23fb1961165fc7a94e7d15ff4/choix-0.3.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-04 11:19:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lucasmaystre",
    "github_project": "choix",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "lcname": "choix"
}
        
Elapsed time: 1.80757s