chronowords


Namechronowords JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/crow-intelligence/chronowords
SummaryNone
upload_time2025-02-12 14:01:45
maintainerNone
docs_urlNone
authorOrsolya Putz
requires_python<3.13,>=3.10
licenseMIT
keywords nlp embeddings semantic-change topic-modeling
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # chronowords

Detect semantic shifts over time in word embeddings. Train small PPMI-based language models, create topic models using NMF, and analyze semantic changes using Procrustes alignment.

## Features

- Memory-efficient word embedding training using Count-Min Sketch
- Topic modeling with Non-negative Matrix Factorization
- Temporal alignment of word embeddings using Procrustes analysis
- Cython-optimized PPMI matrix computation

## Installation

```bash
pip install chronowords
```

## Quick Start
```python
from chronowords.algebra import SVDAlgebra
from chronowords.topics import TopicModel

# Train word embeddings
model = SVDAlgebra(n_components=300)
model.train(your_corpus_iterator)

# Find similar words
similar = model.most_similar('computer')
for word in similar:
    print(f"{word.word}: {word.similarity:.3f}")

# Create topic model
topic_model = TopicModel(n_topics=10)
topic_model.fit(ppmi_matrix, vocabulary)
```

## Documentation
Full documentation available at ReadTheDocs.

## Requirements

Python ≥ 3.10
NumPy
SciPy
scikit-learn
Cython

## Contributing
Pull requests welcome. For major changes, open an issue first.

## License
MIT

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/crow-intelligence/chronowords",
    "name": "chronowords",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.10",
    "maintainer_email": null,
    "keywords": "nlp, embeddings, semantic-change, topic-modeling",
    "author": "Orsolya Putz",
    "author_email": "orsolya.putz@crowintelligence.org>,Zoltan Varju <zoltan.varju@crowintelligence.org",
    "download_url": "https://files.pythonhosted.org/packages/bb/ba/e805cd1fba12ce2644a5414b1918f2ecf59d91cf6affd1c8b829e3c68e73/chronowords-0.1.1.tar.gz",
    "platform": null,
    "description": "# chronowords\n\nDetect semantic shifts over time in word embeddings. Train small PPMI-based language models, create topic models using NMF, and analyze semantic changes using Procrustes alignment.\n\n## Features\n\n- Memory-efficient word embedding training using Count-Min Sketch\n- Topic modeling with Non-negative Matrix Factorization\n- Temporal alignment of word embeddings using Procrustes analysis\n- Cython-optimized PPMI matrix computation\n\n## Installation\n\n```bash\npip install chronowords\n```\n\n## Quick Start\n```python\nfrom chronowords.algebra import SVDAlgebra\nfrom chronowords.topics import TopicModel\n\n# Train word embeddings\nmodel = SVDAlgebra(n_components=300)\nmodel.train(your_corpus_iterator)\n\n# Find similar words\nsimilar = model.most_similar('computer')\nfor word in similar:\n    print(f\"{word.word}: {word.similarity:.3f}\")\n\n# Create topic model\ntopic_model = TopicModel(n_topics=10)\ntopic_model.fit(ppmi_matrix, vocabulary)\n```\n\n## Documentation\nFull documentation available at ReadTheDocs.\n\n## Requirements\n\nPython \u2265 3.10\nNumPy\nSciPy\nscikit-learn\nCython\n\n## Contributing\nPull requests welcome. For major changes, open an issue first.\n\n## License\nMIT\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": null,
    "version": "0.1.1",
    "project_urls": {
        "Documentation": "https://chronowords.readthedocs.io",
        "Homepage": "https://github.com/crow-intelligence/chronowords",
        "Repository": "https://github.com/crow-intelligence/chronowords"
    },
    "split_keywords": [
        "nlp",
        " embeddings",
        " semantic-change",
        " topic-modeling"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9962e461adf89e9f42786dc19432f91a56de3184362d9939cabb83ad3c947e2d",
                "md5": "7cd18fa2aa6c42660b8922f8df3cdfbc",
                "sha256": "b0c62531e282883981f5d1c3a88e8bc36247ad2d3f26b2b452a37507607c4ec7"
            },
            "downloads": -1,
            "filename": "chronowords-0.1.1-cp312-cp312-manylinux_2_39_x86_64.whl",
            "has_sig": false,
            "md5_digest": "7cd18fa2aa6c42660b8922f8df3cdfbc",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": "<3.13,>=3.10",
            "size": 16974,
            "upload_time": "2025-02-12T14:01:43",
            "upload_time_iso_8601": "2025-02-12T14:01:43.366859Z",
            "url": "https://files.pythonhosted.org/packages/99/62/e461adf89e9f42786dc19432f91a56de3184362d9939cabb83ad3c947e2d/chronowords-0.1.1-cp312-cp312-manylinux_2_39_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bbbae805cd1fba12ce2644a5414b1918f2ecf59d91cf6affd1c8b829e3c68e73",
                "md5": "5051f030b258ebdf1758b6dc681f20c0",
                "sha256": "b40b07b197b809cb7b3aca7066907a7b5a23019738c45e9c3522b321710f0b16"
            },
            "downloads": -1,
            "filename": "chronowords-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "5051f030b258ebdf1758b6dc681f20c0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.10",
            "size": 15440,
            "upload_time": "2025-02-12T14:01:45",
            "upload_time_iso_8601": "2025-02-12T14:01:45.203316Z",
            "url": "https://files.pythonhosted.org/packages/bb/ba/e805cd1fba12ce2644a5414b1918f2ecf59d91cf6affd1c8b829e3c68e73/chronowords-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-12 14:01:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "crow-intelligence",
    "github_project": "chronowords",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "chronowords"
}
        
Elapsed time: 0.52452s