Name | chunky3d JSON |
Version |
0.1.13
JSON |
| download |
home_page | |
Summary | A 3D array-like NumPy-based data structure for large sparsely-populated volumes |
upload_time | 2023-11-10 23:32:38 |
maintainer | |
docs_url | None |
author | |
requires_python | |
license | MIT |
keywords |
3d
array
chunked
sparse
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
|
coveralls test coverage |
No coveralls.
|
# chunky3d
A 3D array-like NumPy-based data structure for large sparsely-populated volumes
## Build
[![Build Status](https://travis-ci.org/K3D-tools/chunky3d.svg?branch=master)](https://travis-ci.org/K3D-tools/chunky3d)
# Introduction
This library provides a data structure, `Sparse`, which represents 3D volumetric data
and supports a subset of `np.ndarray` features.
## Example
```
>>> import numpy as np
>>> from chunky3d import Sparse
>>> s = Sparse(shape=(64, 64, 64))
>>> s[0, 0, 0]
0
>>> s.dtype
numpy.float64
>>> s.nchunks
8
>>> s.nchunks_initialized
0
>>> s[1, 2, 3] = 3
>>> s.nchunks_initialized
1
>>> s[:2, 2, 3:5]
array([[0., 0.],
[3., 0.]])
```
# Features
* `chunky3d.sparse_func` - a collection of functions for analyzing chunked arrays, including
morphological operations (opening, closing), thinning, connected components
* Fast load and save using `msgpack`
* Operations on arrays using `.run()`, with possible acceleration using `multiprocessing`
* `multiprocessing`-based acceleration in most of existing `sparse_func`
* Accelerated lookup using `numba`
* Interpolation (point probe)
* Origin and spacing: representing 3D space with non-uniform spacing for different axes
* Easy visualization of arrays with `dtype=np.uint8` via `chunky3d.k3d_connector.get_k3d_object()`
Raw data
{
"_id": null,
"home_page": "",
"name": "chunky3d",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "3d,array,chunked,sparse",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/cd/09/902d5d7ddbd4d9b4bfcf80a49f5f983a1b9f04d423aebf13fc94abe399e5/chunky3d-0.1.13.tar.gz",
"platform": null,
"description": "# chunky3d\nA 3D array-like NumPy-based data structure for large sparsely-populated volumes\n\n## Build\n[![Build Status](https://travis-ci.org/K3D-tools/chunky3d.svg?branch=master)](https://travis-ci.org/K3D-tools/chunky3d)\n\n# Introduction\n\nThis library provides a data structure, `Sparse`, which represents 3D volumetric data\nand supports a subset of `np.ndarray` features.\n\n## Example\n\n```\n>>> import numpy as np\n>>> from chunky3d import Sparse\n\n>>> s = Sparse(shape=(64, 64, 64))\n>>> s[0, 0, 0]\n0\n\n>>> s.dtype\nnumpy.float64\n\n>>> s.nchunks\n8\n\n>>> s.nchunks_initialized\n0\n\n>>> s[1, 2, 3] = 3\n>>> s.nchunks_initialized\n1\n\n>>> s[:2, 2, 3:5]\narray([[0., 0.],\n [3., 0.]])\n```\n\n# Features\n\n* `chunky3d.sparse_func` - a collection of functions for analyzing chunked arrays, including \n morphological operations (opening, closing), thinning, connected components\n* Fast load and save using `msgpack`\n* Operations on arrays using `.run()`, with possible acceleration using `multiprocessing`\n* `multiprocessing`-based acceleration in most of existing `sparse_func`\n* Accelerated lookup using `numba`\n* Interpolation (point probe)\n* Origin and spacing: representing 3D space with non-uniform spacing for different axes\n* Easy visualization of arrays with `dtype=np.uint8` via `chunky3d.k3d_connector.get_k3d_object()`\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A 3D array-like NumPy-based data structure for large sparsely-populated volumes",
"version": "0.1.13",
"project_urls": {
"Source": "https://github.com/K3D-tools/chunky3d",
"Tracker": "https://github.com/K3D-tools/chunky3d/issues"
},
"split_keywords": [
"3d",
"array",
"chunked",
"sparse"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9c8081415334b9bdd05ae9384c58a33d7d661edccb79952dfeca57e1d576210c",
"md5": "c309edaaff1dfd562bb6107f8463be29",
"sha256": "7a0a29ce04a5fb8fcccbd424d3f5c9491bb29ecaaae5d90212126e69695535e9"
},
"downloads": -1,
"filename": "chunky3d-0.1.13-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c309edaaff1dfd562bb6107f8463be29",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 32815,
"upload_time": "2023-11-10T23:32:35",
"upload_time_iso_8601": "2023-11-10T23:32:35.781858Z",
"url": "https://files.pythonhosted.org/packages/9c/80/81415334b9bdd05ae9384c58a33d7d661edccb79952dfeca57e1d576210c/chunky3d-0.1.13-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cd09902d5d7ddbd4d9b4bfcf80a49f5f983a1b9f04d423aebf13fc94abe399e5",
"md5": "8a5e5223d0d122fe9bf5d5ed302c608e",
"sha256": "d27c88916f844b5608c9613278ea07c622e6a6980bfb59f142079b6b5d7cdf06"
},
"downloads": -1,
"filename": "chunky3d-0.1.13.tar.gz",
"has_sig": false,
"md5_digest": "8a5e5223d0d122fe9bf5d5ed302c608e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 30640,
"upload_time": "2023-11-10T23:32:38",
"upload_time_iso_8601": "2023-11-10T23:32:38.560706Z",
"url": "https://files.pythonhosted.org/packages/cd/09/902d5d7ddbd4d9b4bfcf80a49f5f983a1b9f04d423aebf13fc94abe399e5/chunky3d-0.1.13.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-10 23:32:38",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "K3D-tools",
"github_project": "chunky3d",
"travis_ci": true,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "chunky3d"
}