[![CodeFactor](https://www.codefactor.io/repository/github/g-filomena/cityimage/badge)](https://www.codefactor.io/repository/github/g-filomena/cityimage)
[![Actions Status](https://github.com/g-filomena/cityimage/workflows/tests/badge.svg)](https://github.com//g-filomena/cityimage/actions?query=workflow%3Atests)
[![codecov](https://codecov.io/gh/g-filomena/cityImage/branch/master/graph/badge.svg)](https://codecov.io/gh/g-filomena/cityImage)
[![PyPI version](https://badge.fury.io/py/cityImage.svg)](https://badge.fury.io/py/cityImage)
# cityImage
**A tool for analysing urban legibility and extracting The Computational Image of the City**
For full documentation and examples see [the user manual](https://cityimage-docs.readthedocs.io/en/latest/).
This repository provides a set of functions to extract salient urban features in line with the definitions laid down by Kevin Lynch in [The Image of The City](https://mitpress.mit.edu/books/image-city) using open and freely available geospatial datasets.
The methods are fully documented in *A Computational approach to The Image of the City* by Filomena, Verstegen, and Manley, published in [Cities](https://doi.org/10.1016/j.cities.2019.01.006).
The tools are written in Python and requires:
* [OSMNx](https://osmnx.readthedocs.io/en/stable/).
* [PyVista](https://docs.pyvista.org/version/stable/).
* [python-louvain](https://github.com/taynaud/python-louvain).
* [mapclassify](https://github.com/pysal/mapclassify).
It is built on [GeoPandas](https://github.com/geopandas/geopandas), [NetworkX](https://github.com/networkx/networkx), and [Shapely](https://github.com/shapely/shapely).
## How to install *cityImage*
pip install cityImage
Raw data
{
"_id": null,
"home_page": null,
"name": "cityImage",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "urban Form Analysis, Computational Image of the City, Kevin Lynch, cognitive maps",
"author": "Gabriele Filomena",
"author_email": "gabriele.filomena@liverpool.ac.uk",
"download_url": "https://files.pythonhosted.org/packages/ab/82/59db9fc4b9e228f62418f409959c572a43622d0d4d7f2d5d123814f6f5b6/cityImage-1.10.tar.gz",
"platform": null,
"description": "[![CodeFactor](https://www.codefactor.io/repository/github/g-filomena/cityimage/badge)](https://www.codefactor.io/repository/github/g-filomena/cityimage)\r\n[![Actions Status](https://github.com/g-filomena/cityimage/workflows/tests/badge.svg)](https://github.com//g-filomena/cityimage/actions?query=workflow%3Atests)\r\n[![codecov](https://codecov.io/gh/g-filomena/cityImage/branch/master/graph/badge.svg)](https://codecov.io/gh/g-filomena/cityImage)\r\n[![PyPI version](https://badge.fury.io/py/cityImage.svg)](https://badge.fury.io/py/cityImage)\r\n\r\n# cityImage\r\n\r\n**A tool for analysing urban legibility and extracting The Computational Image of the City**\r\nFor full documentation and examples see [the user manual](https://cityimage-docs.readthedocs.io/en/latest/).\r\n\r\nThis repository provides a set of functions to extract salient urban features in line with the definitions laid down by Kevin Lynch in [The Image of The City](https://mitpress.mit.edu/books/image-city) using open and freely available geospatial datasets.\r\nThe methods are fully documented in *A Computational approach to The Image of the City* by Filomena, Verstegen, and Manley, published in [Cities](https://doi.org/10.1016/j.cities.2019.01.006).\r\n\r\nThe tools are written in Python and requires:\r\n\r\n* [OSMNx](https://osmnx.readthedocs.io/en/stable/).\r\n* [PyVista](https://docs.pyvista.org/version/stable/).\r\n* [python-louvain](https://github.com/taynaud/python-louvain).\r\n* [mapclassify](https://github.com/pysal/mapclassify).\r\n\r\nIt is built on [GeoPandas](https://github.com/geopandas/geopandas), [NetworkX](https://github.com/networkx/networkx), and [Shapely](https://github.com/shapely/shapely).\r\n\r\n## How to install *cityImage*\r\n\r\n pip install cityImage\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A package for studying urban form and obtaining the computational Image of the City",
"version": "1.10",
"project_urls": null,
"split_keywords": [
"urban form analysis",
" computational image of the city",
" kevin lynch",
" cognitive maps"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "dc88e9c5173cd3c78be75002ba0bde978fb8b34172de9a7f7f0f3480d7660313",
"md5": "2a574ab6d0aeb8bb451fcb4c2c56f2f2",
"sha256": "ede74a386ba5d45fec3e39150ead14146e88e2c7525dda3084201289250f4830"
},
"downloads": -1,
"filename": "cityImage-1.10-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2a574ab6d0aeb8bb451fcb4c2c56f2f2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 73449,
"upload_time": "2024-04-02T22:45:25",
"upload_time_iso_8601": "2024-04-02T22:45:25.546061Z",
"url": "https://files.pythonhosted.org/packages/dc/88/e9c5173cd3c78be75002ba0bde978fb8b34172de9a7f7f0f3480d7660313/cityImage-1.10-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ab8259db9fc4b9e228f62418f409959c572a43622d0d4d7f2d5d123814f6f5b6",
"md5": "70f57c2aa58f6650bd793bdacb2da5ff",
"sha256": "685a67a3e1c9fe178c355a611694cf57ba174a1676a358fafdaf6e7523ab1ae4"
},
"downloads": -1,
"filename": "cityImage-1.10.tar.gz",
"has_sig": false,
"md5_digest": "70f57c2aa58f6650bd793bdacb2da5ff",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 68132,
"upload_time": "2024-04-02T22:45:27",
"upload_time_iso_8601": "2024-04-02T22:45:27.342975Z",
"url": "https://files.pythonhosted.org/packages/ab/82/59db9fc4b9e228f62418f409959c572a43622d0d4d7f2d5d123814f6f5b6/cityImage-1.10.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-02 22:45:27",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "cityimage"
}