climetlab-cems-flood


Nameclimetlab-cems-flood JSON
Version 0.2.5 PyPI version JSON
download
home_pagehttps://github.com/iacopoff/climetlab-cems-flood
SummaryDownload GloFAS Copernicus Emergency Management System dataset
upload_time2023-01-07 09:25:14
maintainer
docs_urlNone
authoriacopo ferrario
requires_python
licenseApache License Version 2.0
keywords hydrology flood emergency global climate
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Climetlab CEMS Flood

| **Build Status**                                                                                |
|:-------------------------------------------------------------------------------:|
|![Build Status](https://github.com/iacopoff/climetlab-cems-flood/workflows/pytest/badge.svg)|

Download GloFAS data from the Climate Data Store. 

```python
import climetlab as cml

dataset = cml.load_dataset(
            'glofas-seasonal',
            model='lisflood',
            system_version='operational',
            temporal_filter= '2022 01 01',
            leadtime_hour = '24-72',
            variable="river_discharge_in_the_last_24_hours"
)

ds = dataset.to_xarray()

ds
(<xarray.Dataset>
 Dimensions:                  (realization: 51, forecast_reference_time: 1,
                               leadtime: 3, lat: 1500, lon: 3600)
 Coordinates:
   * realization              (realization) int64 0 1 2 3 4 5 ... 46 47 48 49 50
   * forecast_reference_time  (forecast_reference_time) datetime64[ns] 2022-01-01
   * leadtime                 (leadtime) timedelta64[ns] 1 days 2 days 3 days
   * lat                      (lat) float64 -59.95 -59.85 -59.75 ... 89.85 89.95
   * lon                      (lon) float64 -179.9 -179.8 -179.8 ... 179.8 540.0
     time                     (forecast_reference_time, leadtime) datetime64[ns] ...
 Data variables:
     dis24                    (realization, forecast_reference_time, leadtime, lat, lon) float32 ...
 Attributes:
     GRIB_edition:            2
     GRIB_centre:             ecmf
     GRIB_centreDescription:  European Centre for Medium-Range Weather Forecasts
     GRIB_subCentre:          0
     Conventions:             CF-1.7
     institution:             European Centre for Medium-Range Weather Forecasts
     history:                 2023-01-02T10:51 GRIB to CDM+CF via cfgrib-0.9.1...,)


```

More
[example requests](https://climetlab-cems-flood.readthedocs.io/en/latest/how_to.html)
and
[documentation](https://climetlab-cems-flood.readthedocs.io/)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/iacopoff/climetlab-cems-flood",
    "name": "climetlab-cems-flood",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "hydrology,flood,emergency,global,climate",
    "author": "iacopo ferrario",
    "author_email": "iacopo.ff@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/17/62/ea995f57cbc305d582f273c3f4c00801a51be1854b00dab41ffa37fc8aeb/climetlab_cems_flood-0.2.5.tar.gz",
    "platform": null,
    "description": "\n# Climetlab CEMS Flood\n\n| **Build Status**                                                                                |\n|:-------------------------------------------------------------------------------:|\n|![Build Status](https://github.com/iacopoff/climetlab-cems-flood/workflows/pytest/badge.svg)|\n\nDownload GloFAS data from the Climate Data Store. \n\n```python\nimport climetlab as cml\n\ndataset = cml.load_dataset(\n            'glofas-seasonal',\n            model='lisflood',\n            system_version='operational',\n            temporal_filter= '2022 01 01',\n            leadtime_hour = '24-72',\n            variable=\"river_discharge_in_the_last_24_hours\"\n)\n\nds = dataset.to_xarray()\n\nds\n(<xarray.Dataset>\n Dimensions:                  (realization: 51, forecast_reference_time: 1,\n                               leadtime: 3, lat: 1500, lon: 3600)\n Coordinates:\n   * realization              (realization) int64 0 1 2 3 4 5 ... 46 47 48 49 50\n   * forecast_reference_time  (forecast_reference_time) datetime64[ns] 2022-01-01\n   * leadtime                 (leadtime) timedelta64[ns] 1 days 2 days 3 days\n   * lat                      (lat) float64 -59.95 -59.85 -59.75 ... 89.85 89.95\n   * lon                      (lon) float64 -179.9 -179.8 -179.8 ... 179.8 540.0\n     time                     (forecast_reference_time, leadtime) datetime64[ns] ...\n Data variables:\n     dis24                    (realization, forecast_reference_time, leadtime, lat, lon) float32 ...\n Attributes:\n     GRIB_edition:            2\n     GRIB_centre:             ecmf\n     GRIB_centreDescription:  European Centre for Medium-Range Weather Forecasts\n     GRIB_subCentre:          0\n     Conventions:             CF-1.7\n     institution:             European Centre for Medium-Range Weather Forecasts\n     history:                 2023-01-02T10:51 GRIB to CDM+CF via cfgrib-0.9.1...,)\n\n\n```\n\nMore\n[example requests](https://climetlab-cems-flood.readthedocs.io/en/latest/how_to.html)\nand\n[documentation](https://climetlab-cems-flood.readthedocs.io/)\n\n",
    "bugtrack_url": null,
    "license": "Apache License Version 2.0",
    "summary": "Download GloFAS Copernicus Emergency Management System dataset",
    "version": "0.2.5",
    "split_keywords": [
        "hydrology",
        "flood",
        "emergency",
        "global",
        "climate"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7c8bab783519ab652338783a6b05b8b577c7799175bd7e62abad8b22ff5f8aa6",
                "md5": "2747b3df5ac175d02fdec28ca05c2e73",
                "sha256": "ca1936d0b05f494730c57f75815b758ddfc6384e10d394c424b0d7d53cf785fd"
            },
            "downloads": -1,
            "filename": "climetlab_cems_flood-0.2.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2747b3df5ac175d02fdec28ca05c2e73",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 852790,
            "upload_time": "2023-01-07T09:25:11",
            "upload_time_iso_8601": "2023-01-07T09:25:11.705805Z",
            "url": "https://files.pythonhosted.org/packages/7c/8b/ab783519ab652338783a6b05b8b577c7799175bd7e62abad8b22ff5f8aa6/climetlab_cems_flood-0.2.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1762ea995f57cbc305d582f273c3f4c00801a51be1854b00dab41ffa37fc8aeb",
                "md5": "b7af55f052545fa473c8e606719adf73",
                "sha256": "92348ae8eef1d85cb48d1c498b44f4ffb112a7b73882ca2ed900ba618faa9f1c"
            },
            "downloads": -1,
            "filename": "climetlab_cems_flood-0.2.5.tar.gz",
            "has_sig": false,
            "md5_digest": "b7af55f052545fa473c8e606719adf73",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 867803,
            "upload_time": "2023-01-07T09:25:14",
            "upload_time_iso_8601": "2023-01-07T09:25:14.550066Z",
            "url": "https://files.pythonhosted.org/packages/17/62/ea995f57cbc305d582f273c3f4c00801a51be1854b00dab41ffa37fc8aeb/climetlab_cems_flood-0.2.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-07 09:25:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "iacopoff",
    "github_project": "climetlab-cems-flood",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "tox": true,
    "lcname": "climetlab-cems-flood"
}
        
Elapsed time: 0.05908s