# Climetlab CEMS Flood
| **Build Status** |
|:-------------------------------------------------------------------------------:|
|![Build Status](https://github.com/iacopoff/climetlab-cems-flood/workflows/pytest/badge.svg)|
Download GloFAS data from the Climate Data Store.
```python
import climetlab as cml
dataset = cml.load_dataset(
'glofas-seasonal',
model='lisflood',
system_version='operational',
temporal_filter= '2022 01 01',
leadtime_hour = '24-72',
variable="river_discharge_in_the_last_24_hours"
)
ds = dataset.to_xarray()
ds
(<xarray.Dataset>
Dimensions: (realization: 51, forecast_reference_time: 1,
leadtime: 3, lat: 1500, lon: 3600)
Coordinates:
* realization (realization) int64 0 1 2 3 4 5 ... 46 47 48 49 50
* forecast_reference_time (forecast_reference_time) datetime64[ns] 2022-01-01
* leadtime (leadtime) timedelta64[ns] 1 days 2 days 3 days
* lat (lat) float64 -59.95 -59.85 -59.75 ... 89.85 89.95
* lon (lon) float64 -179.9 -179.8 -179.8 ... 179.8 540.0
time (forecast_reference_time, leadtime) datetime64[ns] ...
Data variables:
dis24 (realization, forecast_reference_time, leadtime, lat, lon) float32 ...
Attributes:
GRIB_edition: 2
GRIB_centre: ecmf
GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts
GRIB_subCentre: 0
Conventions: CF-1.7
institution: European Centre for Medium-Range Weather Forecasts
history: 2023-01-02T10:51 GRIB to CDM+CF via cfgrib-0.9.1...,)
```
More
[example requests](https://climetlab-cems-flood.readthedocs.io/en/latest/how_to.html)
and
[documentation](https://climetlab-cems-flood.readthedocs.io/)
Raw data
{
"_id": null,
"home_page": "https://github.com/iacopoff/climetlab-cems-flood",
"name": "climetlab-cems-flood",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "hydrology,flood,emergency,global,climate",
"author": "iacopo ferrario",
"author_email": "iacopo.ff@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/17/62/ea995f57cbc305d582f273c3f4c00801a51be1854b00dab41ffa37fc8aeb/climetlab_cems_flood-0.2.5.tar.gz",
"platform": null,
"description": "\n# Climetlab CEMS Flood\n\n| **Build Status** |\n|:-------------------------------------------------------------------------------:|\n|![Build Status](https://github.com/iacopoff/climetlab-cems-flood/workflows/pytest/badge.svg)|\n\nDownload GloFAS data from the Climate Data Store. \n\n```python\nimport climetlab as cml\n\ndataset = cml.load_dataset(\n 'glofas-seasonal',\n model='lisflood',\n system_version='operational',\n temporal_filter= '2022 01 01',\n leadtime_hour = '24-72',\n variable=\"river_discharge_in_the_last_24_hours\"\n)\n\nds = dataset.to_xarray()\n\nds\n(<xarray.Dataset>\n Dimensions: (realization: 51, forecast_reference_time: 1,\n leadtime: 3, lat: 1500, lon: 3600)\n Coordinates:\n * realization (realization) int64 0 1 2 3 4 5 ... 46 47 48 49 50\n * forecast_reference_time (forecast_reference_time) datetime64[ns] 2022-01-01\n * leadtime (leadtime) timedelta64[ns] 1 days 2 days 3 days\n * lat (lat) float64 -59.95 -59.85 -59.75 ... 89.85 89.95\n * lon (lon) float64 -179.9 -179.8 -179.8 ... 179.8 540.0\n time (forecast_reference_time, leadtime) datetime64[ns] ...\n Data variables:\n dis24 (realization, forecast_reference_time, leadtime, lat, lon) float32 ...\n Attributes:\n GRIB_edition: 2\n GRIB_centre: ecmf\n GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts\n GRIB_subCentre: 0\n Conventions: CF-1.7\n institution: European Centre for Medium-Range Weather Forecasts\n history: 2023-01-02T10:51 GRIB to CDM+CF via cfgrib-0.9.1...,)\n\n\n```\n\nMore\n[example requests](https://climetlab-cems-flood.readthedocs.io/en/latest/how_to.html)\nand\n[documentation](https://climetlab-cems-flood.readthedocs.io/)\n\n",
"bugtrack_url": null,
"license": "Apache License Version 2.0",
"summary": "Download GloFAS Copernicus Emergency Management System dataset",
"version": "0.2.5",
"split_keywords": [
"hydrology",
"flood",
"emergency",
"global",
"climate"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7c8bab783519ab652338783a6b05b8b577c7799175bd7e62abad8b22ff5f8aa6",
"md5": "2747b3df5ac175d02fdec28ca05c2e73",
"sha256": "ca1936d0b05f494730c57f75815b758ddfc6384e10d394c424b0d7d53cf785fd"
},
"downloads": -1,
"filename": "climetlab_cems_flood-0.2.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2747b3df5ac175d02fdec28ca05c2e73",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 852790,
"upload_time": "2023-01-07T09:25:11",
"upload_time_iso_8601": "2023-01-07T09:25:11.705805Z",
"url": "https://files.pythonhosted.org/packages/7c/8b/ab783519ab652338783a6b05b8b577c7799175bd7e62abad8b22ff5f8aa6/climetlab_cems_flood-0.2.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1762ea995f57cbc305d582f273c3f4c00801a51be1854b00dab41ffa37fc8aeb",
"md5": "b7af55f052545fa473c8e606719adf73",
"sha256": "92348ae8eef1d85cb48d1c498b44f4ffb112a7b73882ca2ed900ba618faa9f1c"
},
"downloads": -1,
"filename": "climetlab_cems_flood-0.2.5.tar.gz",
"has_sig": false,
"md5_digest": "b7af55f052545fa473c8e606719adf73",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 867803,
"upload_time": "2023-01-07T09:25:14",
"upload_time_iso_8601": "2023-01-07T09:25:14.550066Z",
"url": "https://files.pythonhosted.org/packages/17/62/ea995f57cbc305d582f273c3f4c00801a51be1854b00dab41ffa37fc8aeb/climetlab_cems_flood-0.2.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-07 09:25:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "iacopoff",
"github_project": "climetlab-cems-flood",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"tox": true,
"lcname": "climetlab-cems-flood"
}