# The EUMETNET postprocessing benchmark dataset Climetlab plugin
[](https://badge.fury.io/py/climetlab-eumetnet-postprocessing-benchmark)
[](https://pypi.org/project/climetlab-eumetnet-postprocessing-benchmark/)
[](https://github.com/EUPP-benchmark/climetlab-eumetnet-postprocessing-benchmark/actions/workflows/check-and-publish.yml)
[<img src="https://img.shields.io/badge/docs-online-green.svg">](https://eupp-benchmark.github.io/EUPPBench-doc)
A plugin for [climetlab](https://github.com/ecmwf/climetlab) to retrieve the Eumetnet postprocessing benchmark datasets.
Ease the download of the dataset time-aligned forecasts, reforecasts (hindcasts) and observations ([ERA5 reanalysis](https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5)).
> * **Climetlab plugin version**: 0.3.0
> * **Intake catalogues version**: 0.2.0
> * **Base dataset version**: 1.0
> * **EUPPBench dataset version**: 1.0
> * **EUPreciPBench dataset version**: 0.5
> * **Dataset status**: [Datasets status](https://eupp-benchmark.github.io/EUPPBench-doc/files/datasets_status.html#datasets-status)
An [Intake catalogue](https://github.com/EUPP-benchmark/intake-eumetnet-postprocessing-benchmark) is also available, as an alternative way to get the datasets.
## Documentation of the datasets
There are currently three sub-datasets available:
* [The base dataset over Europe's domain](https://eupp-benchmark.github.io/EUPPBench-doc/files/base_datasets.html)
* [The EUPPBench dataset](https://eupp-benchmark.github.io/EUPPBench-doc/files/EUPPBench_datasets.html)
* [The EUPreciPBench dataset]()
They are documented [here](https://eupp-benchmark.github.io/EUPPBench-doc/index.html).
## Using climetlab to access the data
See the [demo notebooks](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks)
[](https://mybinder.org/v2/gh/Climdyn/climetlab-eumetnet-postprocessing-benchmark/main?urlpath=lab)
- [demo_training_data_forecasts.ipynb](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_training_data_forecasts.ipynb)
[](https://nbviewer.jupyter.org/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_training_data_forecasts.ipynb)
[](https://colab.research.google.com/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_training_data_forecasts.ipynb)
[](https://mybinder.org/v2/gh/Climdyn/climetlab-eumetnet-postprocessing-benchmark/main?filepath=notebooks/demo_training_data_forecasts.ipynb)
[<img src="https://deepnote.com/buttons/launch-in-deepnote-small.svg">](https://deepnote.com/launch?name=MyProject&url=https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_training_data_forecasts.ipynb)
- [demo_ensemble_forecasts.ipynb](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_ensemble_forecasts.ipynb)
[](https://nbviewer.jupyter.org/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_ensemble_forecasts.ipynb)
[](https://colab.research.google.com/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_ensemble_forecasts.ipynb)
[](https://mybinder.org/v2/gh/Climdyn/climetlab-eumetnet-postprocessing-benchmark/main?filepath=notebooks/demo_ensemble_forecasts.ipynb)
[<img src="https://deepnote.com/buttons/launch-in-deepnote-small.svg">](https://deepnote.com/launch?name=MyProject&url=https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_ensemble_forecasts.ipynb)
- [demo_EUPPBench_germany_station_data.ipynb](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_EUPPBench_germany_station_data.ipynb)
[](https://nbviewer.jupyter.org/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_EUPPBench_germany_station_data.ipynb)
[](https://colab.research.google.com/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_EUPPBench_germany_station_data.ipynb)
[](https://mybinder.org/v2/gh/Climdyn/climetlab-eumetnet-postprocessing-benchmark/main?filepath=notebooks/demo_EUPPBench_germany_station_data.ipynb)
[<img src="https://deepnote.com/buttons/launch-in-deepnote-small.svg">](https://deepnote.com/launch?name=MyProject&url=https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_EUPPBench_germany_station_data.ipynb)
- [demo_EUPPBench_gridded_data.ipynb](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_EUPPBench_gridded_data.ipynb)
[](https://nbviewer.jupyter.org/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_EUPPBench_gridded_data.ipynb)
[](https://colab.research.google.com/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_EUPPBench_gridded_data.ipynb)
[](https://mybinder.org/v2/gh/Climdyn/climetlab-eumetnet-postprocessing-benchmark/main?filepath=notebooks/demo_EUPPBench_gridded_data.ipynb)
[<img src="https://deepnote.com/buttons/launch-in-deepnote-small.svg">](https://deepnote.com/launch?name=MyProject&url=https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_EUPPBench_gridded_data.ipynb)
The climetlab python package allows easy access to the data with a few lines of code such as:
``` python
# Uncomment the line below if climetlab and the plugin are not yet installed
#!pip install climetlab climetlab-eumetnet-postprocessing-benchmark
import climetlab as cml
ds = cml.load_dataset('eumetnet-postprocessing-benchmark-training-data-gridded-forecasts-surface', "2017-12-02", "2t", "highres")
fcs = ds.to_xarray()
```
which download the deterministic (high-resolution) forecasts for the 2 metres temperature.
Once obtained, the corresponding observations (if available) can be retrieved in the [xarray](http://xarray.pydata.org/en/stable/index.html) format by using the `get_observations_as_xarray` method:
``` python
obs = ds.get_observations_as_xarray()
```
## Support and contributing
Please open a [issue on github](https://github.com/EUPP-benchmark/climetlab-eumetnet-postprocessing-benchmark/issues).
## LICENSE
See the [LICENSE](https://github.com/EUPP-benchmark/climetlab-eumetnet-postprocessing-benchmark/blob/main/LICENSE) file for the code, and the [DATA_LICENSE](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE) for the data.
## Authors
See the [CONTRIBUTORS.md](https://github.com/EUPP-benchmark/climetlab-eumetnet-postprocessing-benchmark/blob/main/CONTRIBUTORS.md) file.
Raw data
{
"_id": null,
"home_page": "https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark",
"name": "climetlab-eumetnet-postprocessing-benchmark",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "meteorology, meteorological-data, postprocessing",
"author": "Jonathan Demaeyer",
"author_email": "jodemaey@meteo.be",
"download_url": "https://files.pythonhosted.org/packages/4a/80/f941bc1af5a29e8a303b0ebd158dd603b42e03b762d6e0a50b0e2f04f5cc/climetlab_eumetnet_postprocessing_benchmark-0.3.0.tar.gz",
"platform": null,
"description": "# The EUMETNET postprocessing benchmark dataset Climetlab plugin\n\n[](https://badge.fury.io/py/climetlab-eumetnet-postprocessing-benchmark)\n[](https://pypi.org/project/climetlab-eumetnet-postprocessing-benchmark/)\n[](https://github.com/EUPP-benchmark/climetlab-eumetnet-postprocessing-benchmark/actions/workflows/check-and-publish.yml)\n[<img src=\"https://img.shields.io/badge/docs-online-green.svg\">](https://eupp-benchmark.github.io/EUPPBench-doc)\n\nA plugin for [climetlab](https://github.com/ecmwf/climetlab) to retrieve the Eumetnet postprocessing benchmark datasets.\n\nEase the download of the dataset time-aligned forecasts, reforecasts (hindcasts) and observations ([ERA5 reanalysis](https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5)).\n\n> * **Climetlab plugin version**: 0.3.0\n> * **Intake catalogues version**: 0.2.0\n> * **Base dataset version**: 1.0\n> * **EUPPBench dataset version**: 1.0\n> * **EUPreciPBench dataset version**: 0.5\n> * **Dataset status**: [Datasets status](https://eupp-benchmark.github.io/EUPPBench-doc/files/datasets_status.html#datasets-status)\n\nAn [Intake catalogue](https://github.com/EUPP-benchmark/intake-eumetnet-postprocessing-benchmark) is also available, as an alternative way to get the datasets.\n\n## Documentation of the datasets\n\nThere are currently three sub-datasets available:\n\n* [The base dataset over Europe's domain](https://eupp-benchmark.github.io/EUPPBench-doc/files/base_datasets.html)\n* [The EUPPBench dataset](https://eupp-benchmark.github.io/EUPPBench-doc/files/EUPPBench_datasets.html)\n* [The EUPreciPBench dataset]()\n\nThey are documented [here](https://eupp-benchmark.github.io/EUPPBench-doc/index.html).\n\n## Using climetlab to access the data\n\nSee the [demo notebooks](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks)\n[](https://mybinder.org/v2/gh/Climdyn/climetlab-eumetnet-postprocessing-benchmark/main?urlpath=lab)\n\n\n- [demo_training_data_forecasts.ipynb](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_training_data_forecasts.ipynb)\n [](https://nbviewer.jupyter.org/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_training_data_forecasts.ipynb)\n [](https://colab.research.google.com/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_training_data_forecasts.ipynb)\n [](https://mybinder.org/v2/gh/Climdyn/climetlab-eumetnet-postprocessing-benchmark/main?filepath=notebooks/demo_training_data_forecasts.ipynb)\n [<img src=\"https://deepnote.com/buttons/launch-in-deepnote-small.svg\">](https://deepnote.com/launch?name=MyProject&url=https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_training_data_forecasts.ipynb)\n\n- [demo_ensemble_forecasts.ipynb](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_ensemble_forecasts.ipynb)\n [](https://nbviewer.jupyter.org/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_ensemble_forecasts.ipynb)\n [](https://colab.research.google.com/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_ensemble_forecasts.ipynb)\n [](https://mybinder.org/v2/gh/Climdyn/climetlab-eumetnet-postprocessing-benchmark/main?filepath=notebooks/demo_ensemble_forecasts.ipynb)\n [<img src=\"https://deepnote.com/buttons/launch-in-deepnote-small.svg\">](https://deepnote.com/launch?name=MyProject&url=https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_ensemble_forecasts.ipynb)\n\n- [demo_EUPPBench_germany_station_data.ipynb](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_EUPPBench_germany_station_data.ipynb)\n [](https://nbviewer.jupyter.org/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_EUPPBench_germany_station_data.ipynb)\n [](https://colab.research.google.com/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_EUPPBench_germany_station_data.ipynb)\n [](https://mybinder.org/v2/gh/Climdyn/climetlab-eumetnet-postprocessing-benchmark/main?filepath=notebooks/demo_EUPPBench_germany_station_data.ipynb)\n [<img src=\"https://deepnote.com/buttons/launch-in-deepnote-small.svg\">](https://deepnote.com/launch?name=MyProject&url=https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_EUPPBench_germany_station_data.ipynb)\n\n- [demo_EUPPBench_gridded_data.ipynb](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_EUPPBench_gridded_data.ipynb)\n [](https://nbviewer.jupyter.org/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_EUPPBench_gridded_data.ipynb)\n [](https://colab.research.google.com/github/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/notebooks/demo_EUPPBench_gridded_data.ipynb)\n [](https://mybinder.org/v2/gh/Climdyn/climetlab-eumetnet-postprocessing-benchmark/main?filepath=notebooks/demo_EUPPBench_gridded_data.ipynb)\n [<img src=\"https://deepnote.com/buttons/launch-in-deepnote-small.svg\">](https://deepnote.com/launch?name=MyProject&url=https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/tree/main/notebooks/demo_EUPPBench_gridded_data.ipynb)\n \nThe climetlab python package allows easy access to the data with a few lines of code such as:\n``` python\n# Uncomment the line below if climetlab and the plugin are not yet installed\n#!pip install climetlab climetlab-eumetnet-postprocessing-benchmark\nimport climetlab as cml\nds = cml.load_dataset('eumetnet-postprocessing-benchmark-training-data-gridded-forecasts-surface', \"2017-12-02\", \"2t\", \"highres\")\nfcs = ds.to_xarray()\n```\nwhich download the deterministic (high-resolution) forecasts for the 2 metres temperature. \nOnce obtained, the corresponding observations (if available) can be retrieved in the [xarray](http://xarray.pydata.org/en/stable/index.html) format by using the `get_observations_as_xarray` method:\n``` python\nobs = ds.get_observations_as_xarray()\n```\n\n\n## Support and contributing\n\nPlease open a [issue on github](https://github.com/EUPP-benchmark/climetlab-eumetnet-postprocessing-benchmark/issues).\n\n## LICENSE\n\nSee the [LICENSE](https://github.com/EUPP-benchmark/climetlab-eumetnet-postprocessing-benchmark/blob/main/LICENSE) file for the code, and the [DATA_LICENSE](https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark/blob/main/DATA_LICENSE) for the data.\n\n## Authors\n\nSee the [CONTRIBUTORS.md](https://github.com/EUPP-benchmark/climetlab-eumetnet-postprocessing-benchmark/blob/main/CONTRIBUTORS.md) file.\n",
"bugtrack_url": null,
"license": "BSD-3-Clause License",
"summary": "A plugin for climetlab to retrieve the EUMETNET postprocessing benchmark dataset.",
"version": "0.3.0",
"project_urls": {
"Homepage": "https://github.com/Climdyn/climetlab-eumetnet-postprocessing-benchmark"
},
"split_keywords": [
"meteorology",
" meteorological-data",
" postprocessing"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "4a80f941bc1af5a29e8a303b0ebd158dd603b42e03b762d6e0a50b0e2f04f5cc",
"md5": "e71aa3f1735d202b5973248c9483ed31",
"sha256": "6a5663413205e5d2fa5699bb969bd93e74454ff96ecf6871aff9a7492bb2c3a1"
},
"downloads": -1,
"filename": "climetlab_eumetnet_postprocessing_benchmark-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "e71aa3f1735d202b5973248c9483ed31",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 398616,
"upload_time": "2025-09-12T14:32:46",
"upload_time_iso_8601": "2025-09-12T14:32:46.632752Z",
"url": "https://files.pythonhosted.org/packages/4a/80/f941bc1af5a29e8a303b0ebd158dd603b42e03b762d6e0a50b0e2f04f5cc/climetlab_eumetnet_postprocessing_benchmark-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-12 14:32:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Climdyn",
"github_project": "climetlab-eumetnet-postprocessing-benchmark",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "climetlab-eumetnet-postprocessing-benchmark"
}