climetlab-maelstrom-power-production


Nameclimetlab-maelstrom-power-production JSON
Version 0.2.2 PyPI version JSON
download
home_pagehttps://climetlab.readthedocs.io/en/latest/
SummaryCliMetLab plugin for the dataset climetlab-plugin-a6/maelstrom-production-forecasts.
upload_time2024-09-26 09:52:36
maintainerNone
docs_urlNone
authorFabian Emmerich
requires_python<4.0,>=3.9
licenseApache-2.0
keywords meteorology weather climate wind power
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## climetlab-power-production
[![PyPI version](https://badge.fury.io/py/climetlab-maelstrom-power-production.svg)](https://badge.fury.io/py/climetlab-maelstrom-power-production)
![workflow](https://github.com/faemmi/climetlab-plugin-a6/actions/workflows/check-and-publish.yml/badge.svg)
[![](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

A dataset plugin for climetlab for the dataset climetlab-plugin-a6/maelstrom-production-forecasts.


Features
--------

In this README is a description of how to get the CliMetLab Plugin for A6.

## Installation

Via `pip`

```commandline
pip install climetlab-maelstrom-power-production
```

or via [`poetry`](https://python-poetry.org/)

```bash
git clone git@github.com:4castRenewables/climetlab-plugin-a6.git
cd climetlab-plugin-a6
poetry install --no-dev
```

## Datasets description

There are five datasets:

- `maelstrom-constants-a-b`
- `maelstrom-power-production`
- `maelstrom-weather-model-level`
- `maelstrom-weather-pressure-level`
- `maelstrom-weather-surface-level`

A detailed description of each dataset (variables, meta data etc.) is available [here](https://www.maelstrom-eurohpc.eu/content/docs/uploads/doc6.pdf) (see Section 3.6).

### `maelstrom-constants-a-b`
Constants used for calculation of pressure at intermediate model levels.

#### Usage

```Python
import climetlab as cml

production_data = cml.load_dataset("maelstrom-constants-a-b")
```

#### References
IFS Documentation – Cy47r1, Operational implementation 30 June 2020, Part III: Dynamics and Numerical Procedures, ECMWF, 2020, p. 6, Eq. 2.11

### `maelstrom-power-production`
Power production data of wind turbines located in various regions of Germany.

The data were provided by [NOTUS energy GmbH & Co. KG](https://www.notus.de).
For a detailed description see the link above.

#### Usage

```Python
import climetlab as cml

production_data = cml.load_dataset("maelstrom-power-production", wind_turbine_id=1)
```

The `wind_turbine_id` is a number `1` to `N`, where `N` is the maximum number of currently available wind turbines.

Currently available: 4 wind turbines.

### `maelstrom-weather-model-level`
[ECMWF](https://www.ecmwf.int) IFS HRES model level data for whole Europe.

For a detailed description see the link above.

#### Usage

```Python
import climetlab as cml

weather_ml = cml.load_dataset("maelstrom-weather-model-level", date="2019-01-01")
```

Currently available dates:
- `2017-01-01` until `2020-12-31`

### `maelstrom-weather-pressure-level`
[ECMWF](https://www.ecmwf.int) IF HRES pressure level data for whole Europe.

For a detailed description see the link above.

#### Usage

```Python
import climetlab as cml

weather_pl = cml.load_dataset("maelstrom-weather-pressure-level", date="2019-01-01")
```

Currently available dates:
- `2017-01-01` until `2020-12-31`

### `maelstrom-weather-surface-level`
[ECMWF](https://www.ecmwf.int) IFS HRES surface level data for whole Europe.

For a detailed description see the link above.

#### Usage

```Python
import climetlab as cml

weather_pl = cml.load_dataset("maelstrom-weather-surface-level", date="2019-01-01")
```

Currently available dates:
- `2017-01-01` until `2020-12-31`

## Using climetlab to access the data (supports grib, netcdf and zarr)

See the demo notebooks [here](https://github.com/faemmi/climetlab-plugin-a6/tree/main/notebooks).

The climetlab python package allows easy access to the data with a few lines of code such as:
```Python
!pip install climetlab climetlab-maelstrom-power-production
import climetlab as cml

data = cml.load_dataset("maelstrom-weather-surface-level", date="2019-01-01")
data.to_xarray()
```


### Executing the notebooks

Before executing the notebooks, make sure to install the project and the
notebook dependencies correctly
```commandline
poetry install --extras notebooks
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://climetlab.readthedocs.io/en/latest/",
    "name": "climetlab-maelstrom-power-production",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "meteorology, weather, climate, wind power",
    "author": "Fabian Emmerich",
    "author_email": "fabian.emmerich@4-cast.de",
    "download_url": "https://files.pythonhosted.org/packages/3f/62/fccb96c47578b5c4bf12a52b993b8674cb76d7945ebd9c6ad00e551102a2/climetlab_maelstrom_power_production-0.2.2.tar.gz",
    "platform": null,
    "description": "## climetlab-power-production\n[![PyPI version](https://badge.fury.io/py/climetlab-maelstrom-power-production.svg)](https://badge.fury.io/py/climetlab-maelstrom-power-production)\n![workflow](https://github.com/faemmi/climetlab-plugin-a6/actions/workflows/check-and-publish.yml/badge.svg)\n[![](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n\nA dataset plugin for climetlab for the dataset climetlab-plugin-a6/maelstrom-production-forecasts.\n\n\nFeatures\n--------\n\nIn this README is a description of how to get the CliMetLab Plugin for A6.\n\n## Installation\n\nVia `pip`\n\n```commandline\npip install climetlab-maelstrom-power-production\n```\n\nor via [`poetry`](https://python-poetry.org/)\n\n```bash\ngit clone git@github.com:4castRenewables/climetlab-plugin-a6.git\ncd climetlab-plugin-a6\npoetry install --no-dev\n```\n\n## Datasets description\n\nThere are five datasets:\n\n- `maelstrom-constants-a-b`\n- `maelstrom-power-production`\n- `maelstrom-weather-model-level`\n- `maelstrom-weather-pressure-level`\n- `maelstrom-weather-surface-level`\n\nA detailed description of each dataset (variables, meta data etc.) is available [here](https://www.maelstrom-eurohpc.eu/content/docs/uploads/doc6.pdf) (see Section 3.6).\n\n### `maelstrom-constants-a-b`\nConstants used for calculation of pressure at intermediate model levels.\n\n#### Usage\n\n```Python\nimport climetlab as cml\n\nproduction_data = cml.load_dataset(\"maelstrom-constants-a-b\")\n```\n\n#### References\nIFS Documentation \u2013 Cy47r1, Operational implementation 30 June 2020, Part III: Dynamics and Numerical Procedures, ECMWF, 2020, p. 6, Eq. 2.11\n\n### `maelstrom-power-production`\nPower production data of wind turbines located in various regions of Germany.\n\nThe data were provided by [NOTUS energy GmbH & Co. KG](https://www.notus.de).\nFor a detailed description see the link above.\n\n#### Usage\n\n```Python\nimport climetlab as cml\n\nproduction_data = cml.load_dataset(\"maelstrom-power-production\", wind_turbine_id=1)\n```\n\nThe `wind_turbine_id` is a number `1` to `N`, where `N` is the maximum number of currently available wind turbines.\n\nCurrently available: 4 wind turbines.\n\n### `maelstrom-weather-model-level`\n[ECMWF](https://www.ecmwf.int) IFS HRES model level data for whole Europe.\n\nFor a detailed description see the link above.\n\n#### Usage\n\n```Python\nimport climetlab as cml\n\nweather_ml = cml.load_dataset(\"maelstrom-weather-model-level\", date=\"2019-01-01\")\n```\n\nCurrently available dates:\n- `2017-01-01` until `2020-12-31`\n\n### `maelstrom-weather-pressure-level`\n[ECMWF](https://www.ecmwf.int) IF HRES pressure level data for whole Europe.\n\nFor a detailed description see the link above.\n\n#### Usage\n\n```Python\nimport climetlab as cml\n\nweather_pl = cml.load_dataset(\"maelstrom-weather-pressure-level\", date=\"2019-01-01\")\n```\n\nCurrently available dates:\n- `2017-01-01` until `2020-12-31`\n\n### `maelstrom-weather-surface-level`\n[ECMWF](https://www.ecmwf.int) IFS HRES surface level data for whole Europe.\n\nFor a detailed description see the link above.\n\n#### Usage\n\n```Python\nimport climetlab as cml\n\nweather_pl = cml.load_dataset(\"maelstrom-weather-surface-level\", date=\"2019-01-01\")\n```\n\nCurrently available dates:\n- `2017-01-01` until `2020-12-31`\n\n## Using climetlab to access the data (supports grib, netcdf and zarr)\n\nSee the demo notebooks [here](https://github.com/faemmi/climetlab-plugin-a6/tree/main/notebooks).\n\nThe climetlab python package allows easy access to the data with a few lines of code such as:\n```Python\n!pip install climetlab climetlab-maelstrom-power-production\nimport climetlab as cml\n\ndata = cml.load_dataset(\"maelstrom-weather-surface-level\", date=\"2019-01-01\")\ndata.to_xarray()\n```\n\n\n### Executing the notebooks\n\nBefore executing the notebooks, make sure to install the project and the\nnotebook dependencies correctly\n```commandline\npoetry install --extras notebooks\n```\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "CliMetLab plugin for the dataset climetlab-plugin-a6/maelstrom-production-forecasts.",
    "version": "0.2.2",
    "project_urls": {
        "Homepage": "https://climetlab.readthedocs.io/en/latest/",
        "Repository": "https://github.com/4castRenewables/climetlab-plugin-a6"
    },
    "split_keywords": [
        "meteorology",
        " weather",
        " climate",
        " wind power"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b779e7fc927bf7c7e58358007401b2a65067a6dc42f157d7949e00db9f5027bc",
                "md5": "5602ade58a78b49497134283f068cdfa",
                "sha256": "ba392562b11dc4466a9c9fa654cc8d333d1059e80e4058b32d8756706ac1d796"
            },
            "downloads": -1,
            "filename": "climetlab_maelstrom_power_production-0.2.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5602ade58a78b49497134283f068cdfa",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 17134,
            "upload_time": "2024-09-26T09:52:35",
            "upload_time_iso_8601": "2024-09-26T09:52:35.900049Z",
            "url": "https://files.pythonhosted.org/packages/b7/79/e7fc927bf7c7e58358007401b2a65067a6dc42f157d7949e00db9f5027bc/climetlab_maelstrom_power_production-0.2.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3f62fccb96c47578b5c4bf12a52b993b8674cb76d7945ebd9c6ad00e551102a2",
                "md5": "95c81af9c633b092c8b4ba866ed50fb6",
                "sha256": "9d97fdaefdaf372c73c7b1c9deb3b0ad71e13400b593e7fd1b17e67278d9921e"
            },
            "downloads": -1,
            "filename": "climetlab_maelstrom_power_production-0.2.2.tar.gz",
            "has_sig": false,
            "md5_digest": "95c81af9c633b092c8b4ba866ed50fb6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 11687,
            "upload_time": "2024-09-26T09:52:36",
            "upload_time_iso_8601": "2024-09-26T09:52:36.957872Z",
            "url": "https://files.pythonhosted.org/packages/3f/62/fccb96c47578b5c4bf12a52b993b8674cb76d7945ebd9c6ad00e551102a2/climetlab_maelstrom_power_production-0.2.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-26 09:52:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "4castRenewables",
    "github_project": "climetlab-plugin-a6",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "climetlab-maelstrom-power-production"
}
        
Elapsed time: 1.83706s