# climpy
<center> <img src="climpy.png" alt="logo" style="width:100px;"/></center>
Climpy is working to help climate researchers to analyse climate data, write in formats ready to be used with machine learning models and analyse the accuracy of model predictions
https://github.com/climai/climpy/actions/workflows/python-app.yml/badge.svg
The package is divided into three parts
- Transform: The `transform` module transforms by applying different conditions on your dataset. The class diagram below will detail on the application of the module.
```mermaid
---
Transform
---
classDiagram
Hazard <|-- Criterion
class Condition{
args
returns_event
func()
}
class Criterion{
sequence
apply_conditions()
valid_conditions(sequence) bool
}
class Hazard{
event_locations
n_events
apply_conditions()
valid_conditions()
get_event(n) Event
all_events() EventList
}
class DataArray{
xr.DataArray variables
xr.DataArray functions()
}
class LinkDataHazard{
on_events()
get_values()
}
class Event{
data
location
start_time
end_time
r
tau
set_intensity()
}
class EventList{
event_list
}
DataArray -- LinkDataHazard
LinkDataHazard -- Hazard
Hazard *-- EventList
EventList *--Event
Condition .. Criterion
Condition .. Hazard
```
- ml_data: The `ml_data` module creates/writes data to be used conveniently for different kinds of machine learning models. The class diagram below will detail on the application of the module.
```mermaid
---
Data ML
---
classDiagram
List *-- DataArray
class X{
values
meta
}
class Y{
values
meta
}
class MLData{
X
Y
tvt_split()
}
class DataArray{
xr.DataArray variables
xr.DataArray functions()
}
class Split
```
- Metrics: The `metrics` module can be applied to observed and simulated variables. This would include exhaustive set of different metrics that can be used on climate related data
Raw data
{
"_id": null,
"home_page": "https://github.com/ClimAI/climpy",
"name": "climpy",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9,<3.13",
"maintainer_email": "",
"keywords": "climpy,deep-learning,coincidence-analysis",
"author": "Mohit Anand",
"author_email": "mohit@climai.earth",
"download_url": "https://files.pythonhosted.org/packages/fa/71/24271ef8d6d0daabcafc12747267904fcc44401a77d8471b9786ed9b9501/climpy-0.0.4.tar.gz",
"platform": null,
"description": "# climpy\n\n<center> <img src=\"climpy.png\" alt=\"logo\" style=\"width:100px;\"/></center> \n\nClimpy is working to help climate researchers to analyse climate data, write in formats ready to be used with machine learning models and analyse the accuracy of model predictions\n\nhttps://github.com/climai/climpy/actions/workflows/python-app.yml/badge.svg\n\nThe package is divided into three parts\n- Transform: The `transform` module transforms by applying different conditions on your dataset. The class diagram below will detail on the application of the module.\n\n```mermaid\n---\nTransform\n---\n\nclassDiagram\n\nHazard <|-- Criterion\n\nclass Condition{\n args\n returns_event\n func()\n}\n\nclass Criterion{\n sequence\n apply_conditions()\n valid_conditions(sequence) bool\n}\n\nclass Hazard{\n\n event_locations\n n_events\n apply_conditions()\n valid_conditions()\n get_event(n) Event\n all_events() EventList\n}\n\nclass DataArray{\n xr.DataArray variables\n xr.DataArray functions()\n}\n\nclass LinkDataHazard{\n on_events()\n get_values()\n}\n\nclass Event{\n data\n location\n start_time\n end_time\n \n r\n tau\n\n set_intensity()\n}\n\nclass EventList{\n event_list\n}\n\nDataArray -- LinkDataHazard\nLinkDataHazard -- Hazard\nHazard *-- EventList\nEventList *--Event\nCondition .. Criterion\nCondition .. Hazard\n```\n\n- ml_data: The `ml_data` module creates/writes data to be used conveniently for different kinds of machine learning models. The class diagram below will detail on the application of the module.\n\n```mermaid\n---\nData ML\n---\nclassDiagram\n\n\nList *-- DataArray\n\nclass X{\n values\n meta\n}\n\nclass Y{\n values\n meta\n}\n\nclass MLData{\n X\n Y\n tvt_split()\n}\n\n\nclass DataArray{\n xr.DataArray variables\n xr.DataArray functions()\n}\n\nclass Split\n\n```\n\n- Metrics: The `metrics` module can be applied to observed and simulated variables. This would include exhaustive set of different metrics that can be used on climate related data",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "Tools to analyse climate data for machine learning and event analysis",
"version": "0.0.4",
"project_urls": {
"Homepage": "https://github.com/ClimAI/climpy",
"Repository": "https://github.com/ClimAI/climpy"
},
"split_keywords": [
"climpy",
"deep-learning",
"coincidence-analysis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "74a8840a898f03da3380b599c2460f39303eb98f2ca05a46c5b48652f2d260a1",
"md5": "dfbca612e05635deb6731962cf58d5d8",
"sha256": "0da69edacb24e9f22d308dd04ae07d1cf9376d2ca686bc802302fb3d850436d8"
},
"downloads": -1,
"filename": "climpy-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "dfbca612e05635deb6731962cf58d5d8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9,<3.13",
"size": 10382,
"upload_time": "2023-06-23T21:55:22",
"upload_time_iso_8601": "2023-06-23T21:55:22.888702Z",
"url": "https://files.pythonhosted.org/packages/74/a8/840a898f03da3380b599c2460f39303eb98f2ca05a46c5b48652f2d260a1/climpy-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fa7124271ef8d6d0daabcafc12747267904fcc44401a77d8471b9786ed9b9501",
"md5": "e502ab03221b30698bcbab147c042435",
"sha256": "615549ddff83ba0aa47fd969e7f4fa906d48af46c1dd88115ce03467a3909695"
},
"downloads": -1,
"filename": "climpy-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "e502ab03221b30698bcbab147c042435",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9,<3.13",
"size": 8175,
"upload_time": "2023-06-23T21:55:24",
"upload_time_iso_8601": "2023-06-23T21:55:24.501408Z",
"url": "https://files.pythonhosted.org/packages/fa/71/24271ef8d6d0daabcafc12747267904fcc44401a77d8471b9786ed9b9501/climpy-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-23 21:55:24",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ClimAI",
"github_project": "climpy",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "climpy"
}