climpy


Nameclimpy JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/ClimAI/climpy
SummaryTools to analyse climate data for machine learning and event analysis
upload_time2023-06-23 21:55:24
maintainer
docs_urlNone
authorMohit Anand
requires_python>=3.9,<3.13
licenseBSD-3-Clause
keywords climpy deep-learning coincidence-analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # climpy

<center> <img src="climpy.png" alt="logo" style="width:100px;"/></center> 

Climpy is working to help climate researchers to analyse climate data, write in formats ready to be used with machine learning models and analyse the accuracy of model predictions

https://github.com/climai/climpy/actions/workflows/python-app.yml/badge.svg

The package is divided into three parts
- Transform: The `transform` module transforms by applying different conditions on your dataset. The class diagram below will detail on the application of the module.

```mermaid
---
Transform
---

classDiagram

Hazard <|-- Criterion

class Condition{
    args
    returns_event
    func()
}

class Criterion{
    sequence
    apply_conditions()
    valid_conditions(sequence) bool
}

class Hazard{

    event_locations
    n_events
    apply_conditions()
    valid_conditions()
    get_event(n) Event
    all_events() EventList
}

class DataArray{
    xr.DataArray variables
    xr.DataArray functions()
}

class LinkDataHazard{
    on_events()
    get_values()
}

class Event{
    data
    location
    start_time
    end_time
    
    r
    tau

    set_intensity()
}

class EventList{
    event_list
}

DataArray -- LinkDataHazard
LinkDataHazard -- Hazard
Hazard *-- EventList
EventList *--Event
Condition .. Criterion
Condition .. Hazard
```

- ml_data: The `ml_data` module creates/writes data to be used conveniently for different kinds of machine learning models. The class diagram below will detail on the application of the module.

```mermaid
---
Data ML
---
classDiagram


List *-- DataArray

class X{
    values
    meta
}

class Y{
    values
    meta
}

class MLData{
    X
    Y
    tvt_split()
}


class DataArray{
    xr.DataArray variables
    xr.DataArray functions()
}

class Split

```

- Metrics: The `metrics` module can be applied to observed and simulated variables. This would include exhaustive set of different metrics that can be used on climate related data
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ClimAI/climpy",
    "name": "climpy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9,<3.13",
    "maintainer_email": "",
    "keywords": "climpy,deep-learning,coincidence-analysis",
    "author": "Mohit Anand",
    "author_email": "mohit@climai.earth",
    "download_url": "https://files.pythonhosted.org/packages/fa/71/24271ef8d6d0daabcafc12747267904fcc44401a77d8471b9786ed9b9501/climpy-0.0.4.tar.gz",
    "platform": null,
    "description": "# climpy\n\n<center> <img src=\"climpy.png\" alt=\"logo\" style=\"width:100px;\"/></center> \n\nClimpy is working to help climate researchers to analyse climate data, write in formats ready to be used with machine learning models and analyse the accuracy of model predictions\n\nhttps://github.com/climai/climpy/actions/workflows/python-app.yml/badge.svg\n\nThe package is divided into three parts\n- Transform: The `transform` module transforms by applying different conditions on your dataset. The class diagram below will detail on the application of the module.\n\n```mermaid\n---\nTransform\n---\n\nclassDiagram\n\nHazard <|-- Criterion\n\nclass Condition{\n    args\n    returns_event\n    func()\n}\n\nclass Criterion{\n    sequence\n    apply_conditions()\n    valid_conditions(sequence) bool\n}\n\nclass Hazard{\n\n    event_locations\n    n_events\n    apply_conditions()\n    valid_conditions()\n    get_event(n) Event\n    all_events() EventList\n}\n\nclass DataArray{\n    xr.DataArray variables\n    xr.DataArray functions()\n}\n\nclass LinkDataHazard{\n    on_events()\n    get_values()\n}\n\nclass Event{\n    data\n    location\n    start_time\n    end_time\n    \n    r\n    tau\n\n    set_intensity()\n}\n\nclass EventList{\n    event_list\n}\n\nDataArray -- LinkDataHazard\nLinkDataHazard -- Hazard\nHazard *-- EventList\nEventList *--Event\nCondition .. Criterion\nCondition .. Hazard\n```\n\n- ml_data: The `ml_data` module creates/writes data to be used conveniently for different kinds of machine learning models. The class diagram below will detail on the application of the module.\n\n```mermaid\n---\nData ML\n---\nclassDiagram\n\n\nList *-- DataArray\n\nclass X{\n    values\n    meta\n}\n\nclass Y{\n    values\n    meta\n}\n\nclass MLData{\n    X\n    Y\n    tvt_split()\n}\n\n\nclass DataArray{\n    xr.DataArray variables\n    xr.DataArray functions()\n}\n\nclass Split\n\n```\n\n- Metrics: The `metrics` module can be applied to observed and simulated variables. This would include exhaustive set of different metrics that can be used on climate related data",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Tools to analyse climate data for machine learning and event analysis",
    "version": "0.0.4",
    "project_urls": {
        "Homepage": "https://github.com/ClimAI/climpy",
        "Repository": "https://github.com/ClimAI/climpy"
    },
    "split_keywords": [
        "climpy",
        "deep-learning",
        "coincidence-analysis"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "74a8840a898f03da3380b599c2460f39303eb98f2ca05a46c5b48652f2d260a1",
                "md5": "dfbca612e05635deb6731962cf58d5d8",
                "sha256": "0da69edacb24e9f22d308dd04ae07d1cf9376d2ca686bc802302fb3d850436d8"
            },
            "downloads": -1,
            "filename": "climpy-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dfbca612e05635deb6731962cf58d5d8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9,<3.13",
            "size": 10382,
            "upload_time": "2023-06-23T21:55:22",
            "upload_time_iso_8601": "2023-06-23T21:55:22.888702Z",
            "url": "https://files.pythonhosted.org/packages/74/a8/840a898f03da3380b599c2460f39303eb98f2ca05a46c5b48652f2d260a1/climpy-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fa7124271ef8d6d0daabcafc12747267904fcc44401a77d8471b9786ed9b9501",
                "md5": "e502ab03221b30698bcbab147c042435",
                "sha256": "615549ddff83ba0aa47fd969e7f4fa906d48af46c1dd88115ce03467a3909695"
            },
            "downloads": -1,
            "filename": "climpy-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "e502ab03221b30698bcbab147c042435",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9,<3.13",
            "size": 8175,
            "upload_time": "2023-06-23T21:55:24",
            "upload_time_iso_8601": "2023-06-23T21:55:24.501408Z",
            "url": "https://files.pythonhosted.org/packages/fa/71/24271ef8d6d0daabcafc12747267904fcc44401a77d8471b9786ed9b9501/climpy-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-23 21:55:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ClimAI",
    "github_project": "climpy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "climpy"
}
        
Elapsed time: 0.08287s