clinica


Nameclinica JSON
Version 0.9.3 PyPI version JSON
download
home_pagehttps://www.clinica.run
SummarySoftware platform for clinical neuroimaging studies
upload_time2024-11-13 12:34:16
maintainerClinica developers
docs_urlNone
authorARAMIS Lab
requires_python<3.13,>=3.9
licenseMIT
keywords bids image processing machine learning neuroimaging neuroscience
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!--(http://www.clinica.run/img/clinica_brainweb.png)-->
<!-- markdownlint-disable MD033 -->

<h1 align="center">
  <a href="http://www.clinica.run">
    <img src="http://www.clinica.run/assets/images/clinica-icon-257x257.png" alt="Logo" width="120" height="120">
  </a>
  <br/>
  Clinica
</h1>

<p align="center"><strong>Software platform for clinical neuroimaging studies</strong></p>

<p align="center">
  <a href="https://github.com/aramis-lab/clinica/actions/workflows/test.yml">
    <img src="https://github.com/aramis-lab/clinica/actions/workflows/test.yml/badge.svg" alt="Build Status">
  </a>
  <a href="https://badge.fury.io/py/clinica">
    <img src="https://badge.fury.io/py/clinica.svg" alt="PyPI version">
  </a>
  <a href="https://pypi.org/project/clinica">
    <img src="https://img.shields.io/pypi/pyversions/clinica" alt="Supported Python versions">
  </a>
  <a href="https://aramislab.paris.inria.fr/clinica/docs/public/latest/Installation/">
  </a>
  <a href="https://aramislab.paris.inria.fr/clinica/docs/public/latest/Installation/">
    <img src="https://anaconda.org/aramislab/clinica/badges/platforms.svg" alt="platform">
  </a>
  <a href="https://github.com/psf/black">
    <img src="https://img.shields.io/badge/code%20style-black-000000.svg" alt="Code style: black">
  </a>
  <a href="https://pepy.tech/project/clinica">
    <img src="https://static.pepy.tech/badge/clinica/month" alt="Downloads">
  </a>
</p>

<p align="center">
  <a href="http://www.clinica.run">Homepage</a> |
  <a href="https://aramislab.paris.inria.fr/clinica/docs/public/latest/">Documentation</a> |
  <a href="https://doi.org/10.3389/fninf.2021.689675">Paper</a> |
  <a href="https://github.com/aramis-lab/clinica/discussions">Forum</a> |
  See also:
  <a href="#related-repositories">AD-ML</a>,
  <a href="#related-repositories">AD-DL</a>,
  <a href="#related-repositories">ClinicaDL</a>
</p>

## About The Project

Clinica is a software platform for clinical research studies involving patients
with neurological and psychiatric diseases and the acquisition of multimodal
data (neuroimaging, clinical and cognitive evaluations, genetics...),
most often with longitudinal follow-up.

Clinica is command-line driven and written in Python.
It uses the [Nipype](https://nipype.readthedocs.io/) system for pipelining and combines
widely-used software packages for neuroimaging data analysis
([ANTs](http://stnava.github.io/ANTs/),
[FreeSurfer](https://surfer.nmr.mgh.harvard.edu/),
[FSL](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki),
[MRtrix](https://www.mrtrix.org/),
[PETPVC](https://github.com/UCL/PETPVC),
[SPM](https://www.fil.ion.ucl.ac.uk/spm/)), machine learning
([Scikit-learn](https://scikit-learn.org/stable/)) and the [BIDS
standard](http://bids-specification.readthedocs.io/) for data organization.

Clinica provides tools to convert publicly available neuroimaging datasets into
BIDS, namely:

- [ADNI: Alzheimer’s Disease Neuroimaging Initiative](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/ADNI2BIDS/)
- [AIBL: Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/AIBL2BIDS/)
- [HABS: Harvard Aging Brain Study](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/HABS2BIDS/)
- [NIFD: Neuroimaging in Frontotemporal Dementia](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/NIFD2BIDS/)
- [OASIS: Open Access Series of Imaging Studies](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/OASIS2BIDS/)
- [OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer’s Disease](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/OASIS3TOBIDS/)

Clinica can process any BIDS-compliant dataset with a set of complex processing
pipelines involving different software packages for the analysis of
neuroimaging data (T1-weighted MRI, diffusion MRI and PET data).
It also provides integration between feature extraction and statistics, machine
learning or deep learning.

![ClinicaPipelines](http://www.clinica.run/img/Clinica_Pipelines_A4_2021-04-02_75dpi.jpg)

Clinica is also showcased as a framework for the reproducible classification of
Alzheimer's disease using
[machine learning](https://github.com/aramis-lab/AD-ML) and
[deep learning](https://github.com/aramis-lab/clinicadl).

## Getting Started

> Full instructions for installation and additional information can be found in
the [user documentation](https://aramislab.paris.inria.fr/clinica/docs/public/latest/).

### Using pipx (recommended)

Clinica can be easily installed and updated using [pipx](https://pypa.github.io/pipx/).

```console
pipx install clinica
```

### Using pip

```console
pip install clinica
```

### Using Conda

Clinica relies on multiple third-party tools to perform processing.

An environment file is provided in this repository
to facilitate their installation in a [Conda](https://docs.conda.io/en/latest/miniconda.html) environment:

```console
git clone https://github.com/aramis-lab/clinica && cd clinica
conda env create
conda activate clinica
```

After activation, use `pip` to install Clinica.

### Additional dependencies (required)

Depending on the pipeline that you want to use, you need to install pipeline-specific interfaces.
Some of which uses a different runtime or use incompatible licensing terms, which prevent their distribution alongside Clinica.
Not all the dependencies are necessary to run Clinica.
Please refer to this [page](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Third-party/)
to determine which third-party libraries you need to install.

## Example

Diagram illustrating the Clinica pipelines involved when performing a group
comparison of FDG PET data projected on the cortical surface between patients
with Alzheimer's disease and healthy controls from the ADNI database:

![ClinicaExample](http://www.clinica.run/img/Clinica_Example_2021-04-02_75dpi.jpg)

1. Clinical and neuroimaging data are downloaded from the ADNI website and data
   are converted into BIDS with the [`adni-to-bids`
   converter](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/ADNI2BIDS/).
2. Estimation of the cortical and white surface is then produced by the
   [`t1-freesurfer`
   pipeline](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/T1_FreeSurfer/).
3. FDG PET data can be projected on the subject’s cortical surface and
   normalized to the FsAverage template from FreeSurfer using the
   [`pet-surface` pipeline](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/PET_Surface/).
4. TSV file with demographic information of the population studied is given to
   the [`statistics-surface`
   pipeline](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/Stats_Surface/) to generate
   the results of the group comparison.

> For more examples and details, please refer to the
> [Documentation](https://aramislab.paris.inria.fr/clinica/docs/public/latest/).

## Support

- Check for [past answers](https://groups.google.com/forum/#!forum/clinica-user) in the old Clinica Google Group
- Start a [discussion](https://github.com/aramis-lab/clinica/discussions) on Github
- Report an [issue](https://github.com/aramis-lab/clinica/issues) on GitHub

## Contributing

We encourage you to contribute to Clinica!
Please check out the [Contributing to Clinica guide](CONTRIBUTING.md) for
guidelines about how to proceed.  Do not hesitate to ask questions if something
is not clear for you, report an issue, etc.

## License

This software is distributed under the MIT License.
See [license file](https://github.com/aramis-lab/clinica/blob/dev/LICENSE.txt)
for more information.

## Citing us

- Routier, A., Burgos, N., Díaz, M., Bacci, M., Bottani, S., El-Rifai O., Fontanella, S., Gori, P., Guillon, J., Guyot, A., Hassanaly, R., Jacquemont, T.,  Lu, P., Marcoux, A.,  Moreau, T., Samper-González, J., Teichmann, M., Thibeau-Sutre, E., Vaillant G., Wen, J., Wild, A., Habert, M.-O., Durrleman, S., and Colliot, O.:
*Clinica: An Open Source Software Platform for Reproducible Clinical Neuroscience Studies* Frontiers in Neuroinformatics, 2021
[doi:10.3389/fninf.2021.689675](https://doi.org/10.3389/fninf.2021.689675)

## Related Repositories

- [AD-DL: Classification of Alzheimer's disease status with convolutional neural networks](https://github.com/aramis-lab/AD-DL).
- [AD-ML: Framework for the reproducible classification of Alzheimer's disease using
machine learning](https://github.com/aramis-lab/AD-ML).
- [ClinicaDL: Framework for the reproducible processing of neuroimaging data with deep learning methods](https://github.com/aramis-lab/clinicadl).


            

Raw data

            {
    "_id": null,
    "home_page": "https://www.clinica.run",
    "name": "clinica",
    "maintainer": "Clinica developers",
    "docs_url": null,
    "requires_python": "<3.13,>=3.9",
    "maintainer_email": "clinica.run@gmail.com",
    "keywords": "bids, image processing, machine learning, neuroimaging, neuroscience",
    "author": "ARAMIS Lab",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/69/b8/d1e6c0fd620e4c5e8e58ba6b99abee7dcf0216ff6209c409e6d193dbee40/clinica-0.9.3.tar.gz",
    "platform": null,
    "description": "<!--(http://www.clinica.run/img/clinica_brainweb.png)-->\n<!-- markdownlint-disable MD033 -->\n\n<h1 align=\"center\">\n  <a href=\"http://www.clinica.run\">\n    <img src=\"http://www.clinica.run/assets/images/clinica-icon-257x257.png\" alt=\"Logo\" width=\"120\" height=\"120\">\n  </a>\n  <br/>\n  Clinica\n</h1>\n\n<p align=\"center\"><strong>Software platform for clinical neuroimaging studies</strong></p>\n\n<p align=\"center\">\n  <a href=\"https://github.com/aramis-lab/clinica/actions/workflows/test.yml\">\n    <img src=\"https://github.com/aramis-lab/clinica/actions/workflows/test.yml/badge.svg\" alt=\"Build Status\">\n  </a>\n  <a href=\"https://badge.fury.io/py/clinica\">\n    <img src=\"https://badge.fury.io/py/clinica.svg\" alt=\"PyPI version\">\n  </a>\n  <a href=\"https://pypi.org/project/clinica\">\n    <img src=\"https://img.shields.io/pypi/pyversions/clinica\" alt=\"Supported Python versions\">\n  </a>\n  <a href=\"https://aramislab.paris.inria.fr/clinica/docs/public/latest/Installation/\">\n  </a>\n  <a href=\"https://aramislab.paris.inria.fr/clinica/docs/public/latest/Installation/\">\n    <img src=\"https://anaconda.org/aramislab/clinica/badges/platforms.svg\" alt=\"platform\">\n  </a>\n  <a href=\"https://github.com/psf/black\">\n    <img src=\"https://img.shields.io/badge/code%20style-black-000000.svg\" alt=\"Code style: black\">\n  </a>\n  <a href=\"https://pepy.tech/project/clinica\">\n    <img src=\"https://static.pepy.tech/badge/clinica/month\" alt=\"Downloads\">\n  </a>\n</p>\n\n<p align=\"center\">\n  <a href=\"http://www.clinica.run\">Homepage</a> |\n  <a href=\"https://aramislab.paris.inria.fr/clinica/docs/public/latest/\">Documentation</a> |\n  <a href=\"https://doi.org/10.3389/fninf.2021.689675\">Paper</a> |\n  <a href=\"https://github.com/aramis-lab/clinica/discussions\">Forum</a> |\n  See also:\n  <a href=\"#related-repositories\">AD-ML</a>,\n  <a href=\"#related-repositories\">AD-DL</a>,\n  <a href=\"#related-repositories\">ClinicaDL</a>\n</p>\n\n## About The Project\n\nClinica is a software platform for clinical research studies involving patients\nwith neurological and psychiatric diseases and the acquisition of multimodal\ndata (neuroimaging, clinical and cognitive evaluations, genetics...),\nmost often with longitudinal follow-up.\n\nClinica is command-line driven and written in Python.\nIt uses the [Nipype](https://nipype.readthedocs.io/) system for pipelining and combines\nwidely-used software packages for neuroimaging data analysis\n([ANTs](http://stnava.github.io/ANTs/),\n[FreeSurfer](https://surfer.nmr.mgh.harvard.edu/),\n[FSL](https://fsl.fmrib.ox.ac.uk/fsl/fslwiki),\n[MRtrix](https://www.mrtrix.org/),\n[PETPVC](https://github.com/UCL/PETPVC),\n[SPM](https://www.fil.ion.ucl.ac.uk/spm/)), machine learning\n([Scikit-learn](https://scikit-learn.org/stable/)) and the [BIDS\nstandard](http://bids-specification.readthedocs.io/) for data organization.\n\nClinica provides tools to convert publicly available neuroimaging datasets into\nBIDS, namely:\n\n- [ADNI: Alzheimer\u2019s Disease Neuroimaging Initiative](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/ADNI2BIDS/)\n- [AIBL: Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/AIBL2BIDS/)\n- [HABS: Harvard Aging Brain Study](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/HABS2BIDS/)\n- [NIFD: Neuroimaging in Frontotemporal Dementia](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/NIFD2BIDS/)\n- [OASIS: Open Access Series of Imaging Studies](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/OASIS2BIDS/)\n- [OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer\u2019s Disease](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/OASIS3TOBIDS/)\n\nClinica can process any BIDS-compliant dataset with a set of complex processing\npipelines involving different software packages for the analysis of\nneuroimaging data (T1-weighted MRI, diffusion MRI and PET data).\nIt also provides integration between feature extraction and statistics, machine\nlearning or deep learning.\n\n![ClinicaPipelines](http://www.clinica.run/img/Clinica_Pipelines_A4_2021-04-02_75dpi.jpg)\n\nClinica is also showcased as a framework for the reproducible classification of\nAlzheimer's disease using\n[machine learning](https://github.com/aramis-lab/AD-ML) and\n[deep learning](https://github.com/aramis-lab/clinicadl).\n\n## Getting Started\n\n> Full instructions for installation and additional information can be found in\nthe [user documentation](https://aramislab.paris.inria.fr/clinica/docs/public/latest/).\n\n### Using pipx (recommended)\n\nClinica can be easily installed and updated using [pipx](https://pypa.github.io/pipx/).\n\n```console\npipx install clinica\n```\n\n### Using pip\n\n```console\npip install clinica\n```\n\n### Using Conda\n\nClinica relies on multiple third-party tools to perform processing.\n\nAn environment file is provided in this repository\nto facilitate their installation in a [Conda](https://docs.conda.io/en/latest/miniconda.html) environment:\n\n```console\ngit clone https://github.com/aramis-lab/clinica && cd clinica\nconda env create\nconda activate clinica\n```\n\nAfter activation, use `pip` to install Clinica.\n\n### Additional dependencies (required)\n\nDepending on the pipeline that you want to use, you need to install pipeline-specific interfaces.\nSome of which uses a different runtime or use incompatible licensing terms, which prevent their distribution alongside Clinica.\nNot all the dependencies are necessary to run Clinica.\nPlease refer to this [page](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Third-party/)\nto determine which third-party libraries you need to install.\n\n## Example\n\nDiagram illustrating the Clinica pipelines involved when performing a group\ncomparison of FDG PET data projected on the cortical surface between patients\nwith Alzheimer's disease and healthy controls from the ADNI database:\n\n![ClinicaExample](http://www.clinica.run/img/Clinica_Example_2021-04-02_75dpi.jpg)\n\n1. Clinical and neuroimaging data are downloaded from the ADNI website and data\n   are converted into BIDS with the [`adni-to-bids`\n   converter](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Converters/ADNI2BIDS/).\n2. Estimation of the cortical and white surface is then produced by the\n   [`t1-freesurfer`\n   pipeline](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/T1_FreeSurfer/).\n3. FDG PET data can be projected on the subject\u2019s cortical surface and\n   normalized to the FsAverage template from FreeSurfer using the\n   [`pet-surface` pipeline](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/PET_Surface/).\n4. TSV file with demographic information of the population studied is given to\n   the [`statistics-surface`\n   pipeline](https://aramislab.paris.inria.fr/clinica/docs/public/latest/Pipelines/Stats_Surface/) to generate\n   the results of the group comparison.\n\n> For more examples and details, please refer to the\n> [Documentation](https://aramislab.paris.inria.fr/clinica/docs/public/latest/).\n\n## Support\n\n- Check for [past answers](https://groups.google.com/forum/#!forum/clinica-user) in the old Clinica Google Group\n- Start a [discussion](https://github.com/aramis-lab/clinica/discussions) on Github\n- Report an [issue](https://github.com/aramis-lab/clinica/issues) on GitHub\n\n## Contributing\n\nWe encourage you to contribute to Clinica!\nPlease check out the [Contributing to Clinica guide](CONTRIBUTING.md) for\nguidelines about how to proceed.  Do not hesitate to ask questions if something\nis not clear for you, report an issue, etc.\n\n## License\n\nThis software is distributed under the MIT License.\nSee [license file](https://github.com/aramis-lab/clinica/blob/dev/LICENSE.txt)\nfor more information.\n\n## Citing us\n\n- Routier, A., Burgos, N., D\u00edaz, M., Bacci, M., Bottani, S., El-Rifai O., Fontanella, S., Gori, P., Guillon, J., Guyot, A., Hassanaly, R., Jacquemont, T.,  Lu, P., Marcoux, A.,  Moreau, T., Samper-Gonz\u00e1lez, J., Teichmann, M., Thibeau-Sutre, E., Vaillant G., Wen, J., Wild, A., Habert, M.-O., Durrleman, S., and Colliot, O.:\n*Clinica: An Open Source Software Platform for Reproducible Clinical Neuroscience Studies* Frontiers in Neuroinformatics, 2021\n[doi:10.3389/fninf.2021.689675](https://doi.org/10.3389/fninf.2021.689675)\n\n## Related Repositories\n\n- [AD-DL: Classification of Alzheimer's disease status with convolutional neural networks](https://github.com/aramis-lab/AD-DL).\n- [AD-ML: Framework for the reproducible classification of Alzheimer's disease using\nmachine learning](https://github.com/aramis-lab/AD-ML).\n- [ClinicaDL: Framework for the reproducible processing of neuroimaging data with deep learning methods](https://github.com/aramis-lab/clinicadl).\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Software platform for clinical neuroimaging studies",
    "version": "0.9.3",
    "project_urls": {
        "Documentation": "https://aramislab.paris.inria.fr/clinica/docs/public/latest",
        "Homepage": "https://www.clinica.run",
        "Repository": "https://github.com/aramis-lab/clinica.git"
    },
    "split_keywords": [
        "bids",
        " image processing",
        " machine learning",
        " neuroimaging",
        " neuroscience"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ff6ddfe0e05845b1db7002d7b8bddae86eae8aa4c63bf34e2241f03185d1ca81",
                "md5": "74074af0e087dc0a2a05ebfdd5547dd4",
                "sha256": "210a0547b3a140422fa862bff1868f86e711b2f32903ccce1729d2c8b2551421"
            },
            "downloads": -1,
            "filename": "clinica-0.9.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "74074af0e087dc0a2a05ebfdd5547dd4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.9",
            "size": 776358,
            "upload_time": "2024-11-13T12:34:13",
            "upload_time_iso_8601": "2024-11-13T12:34:13.885296Z",
            "url": "https://files.pythonhosted.org/packages/ff/6d/dfe0e05845b1db7002d7b8bddae86eae8aa4c63bf34e2241f03185d1ca81/clinica-0.9.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "69b8d1e6c0fd620e4c5e8e58ba6b99abee7dcf0216ff6209c409e6d193dbee40",
                "md5": "9457f585063b4230f2af4d7973fefe3f",
                "sha256": "55d1ab3d95e1ed622df3898743f5e33eed7f67129cbde9fd5c8c950f483f8126"
            },
            "downloads": -1,
            "filename": "clinica-0.9.3.tar.gz",
            "has_sig": false,
            "md5_digest": "9457f585063b4230f2af4d7973fefe3f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.9",
            "size": 617781,
            "upload_time": "2024-11-13T12:34:16",
            "upload_time_iso_8601": "2024-11-13T12:34:16.035520Z",
            "url": "https://files.pythonhosted.org/packages/69/b8/d1e6c0fd620e4c5e8e58ba6b99abee7dcf0216ff6209c409e6d193dbee40/clinica-0.9.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-13 12:34:16",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "aramis-lab",
    "github_project": "clinica",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "clinica"
}
        
Elapsed time: 0.43160s