clinicadl


Nameclinicadl JSON
Version 1.6.1 PyPI version JSON
download
home_pagehttps://clinicadl.readthedocs.io
SummaryFramework for the reproducible processing of neuroimaging data with deep learning methods
upload_time2024-04-05 11:42:43
maintainerClinica developers
docs_urlNone
authorARAMIS Lab
requires_python<3.12,>=3.8
licenseMIT
keywords bids image processing deep learning neuroimaging neuroscience
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center">
  <a href="http://www.clinicadl.readthedocs.io">
    <img src="https://clinicadl.readthedocs.io/en/latest/images/logo.png" alt="ClinicaDL Logo" width="120" height="120">
  </a>
  <br/>
  ClinicaDL
</h1>

<p align="center"><strong>Framework for the reproducible processing of neuroimaging data with deep learning methods</strong></p>

<p align="center">
  <a href="https://ci.inria.fr/clinicadl/job/AD-DL/job/dev/">
    <img src="https://ci.inria.fr/clinicadl/buildStatus/icon?job=AD-DL%2Fdev" alt="Build Status">
  </a>
  <a href="https://badge.fury.io/py/clinicadl">
    <img src="https://badge.fury.io/py/clinicadl.svg" alt="PyPI version">
  </a>
  <a href='https://clinicadl.readthedocs.io/en/latest/?badge=latest'>
    <img src='https://readthedocs.org/projects/clinicadl/badge/?version=latest' alt='Documentation Status' />
  </a>
  <a href='https://pepy.tech/project/clinicadl'>
    <img src='https://static.pepy.tech/badge/clinicadl/month' alt='Downloads' />
  </a>
</p>

<p align="center">
  <a href="https://clinicadl.readthedocs.io/">Documentation</a> |
  <a href="https://aramislab.paris.inria.fr/clinicadl/tuto">Tutorial</a> |
  <a href="https://groups.google.com/forum/#!forum/clinica-user">Forum</a>
</p>


## About the project

This repository hosts ClinicaDL, the deep learning extension of [Clinica](https://github.com/aramis-lab/clinica), 
a python library to process neuroimaging data in [BIDS](https://bids.neuroimaging.io/index.html) format.

> **Disclaimer:** this software is **under development**. Some features can
change between different releases and/or commits.

To access the full documentation of the project, follow the link 
[https://clinicadl.readthedocs.io/](https://clinicadl.readthedocs.io/). 
If you find a problem when using it or if you want to provide us feedback,
please [open an issue](https://github.com/aramis-lab/ad-dl/issues) or write on
the [forum](https://groups.google.com/forum/#!forum/clinica-user).

## Getting started
ClinicaDL currently supports macOS and Linux.

We recommend to use `conda` or `virtualenv` for the installation of ClinicaDL
as it guarantees the correct management of libraries depending on common
packages:

```{.sourceCode .bash}
conda create --name ClinicaDL python=3.8
conda activate ClinicaDL
pip install clinicadl
```

## Tutorial 
Visit our [hands-on tutorial web
site](https://aramislab.paris.inria.fr/clinicadl/tuto) to start
using **ClinicaDL** directly in a Google Colab instance!

## Related Repositories

- [Clinica: Software platform for clinical neuroimaging studies](https://github.com/aramis-lab/clinica)
- [AD-DL: Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation](https://github.com/aramis-lab/AD-DL)
- [AD-ML: Framework for the reproducible classification of Alzheimer's disease using machine learning](https://github.com/aramis-lab/AD-ML)

## Citing us

- Thibeau-Sutre, E., Díaz, M., Hassanaly, R., Routier, A., Dormont, D., Colliot, O., Burgos, N.: ‘ClinicaDL: an open-source deep learning software for reproducible neuroimaging processing‘, 2021. [hal-03351976](https://hal.inria.fr/hal-03351976)
- Routier, A., Burgos, N., Díaz, M., Bacci, M., Bottani, S., El-Rifai O., Fontanella, S., Gori, P., Guillon, J., Guyot, A., Hassanaly, R., Jacquemont, T.,  Lu, P., Marcoux, A.,  Moreau, T., Samper-González, J., Teichmann, M., Thibeau-Sutre, E., Vaillant G., Wen, J., Wild, A., Habert, M.-O., Durrleman, S., and Colliot, O.: ‘Clinica: An Open Source Software Platform for Reproducible Clinical Neuroscience Studies’, 2021. [doi:10.3389/fninf.2021.689675](https://doi.org/10.3389/fninf.2021.689675) [Open Access version](https://hal.inria.fr/hal-02308126)


            

Raw data

            {
    "_id": null,
    "home_page": "https://clinicadl.readthedocs.io",
    "name": "clinicadl",
    "maintainer": "Clinica developers",
    "docs_url": null,
    "requires_python": "<3.12,>=3.8",
    "maintainer_email": "clinica-user@inria.fr",
    "keywords": "bids, image processing, deep learning, neuroimaging, neuroscience",
    "author": "ARAMIS Lab",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/33/dc/31a01c2f0c47e748c822da45155db2b05be1d3b4f09a87df980553398ffd/clinicadl-1.6.1.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\">\n  <a href=\"http://www.clinicadl.readthedocs.io\">\n    <img src=\"https://clinicadl.readthedocs.io/en/latest/images/logo.png\" alt=\"ClinicaDL Logo\" width=\"120\" height=\"120\">\n  </a>\n  <br/>\n  ClinicaDL\n</h1>\n\n<p align=\"center\"><strong>Framework for the reproducible processing of neuroimaging data with deep learning methods</strong></p>\n\n<p align=\"center\">\n  <a href=\"https://ci.inria.fr/clinicadl/job/AD-DL/job/dev/\">\n    <img src=\"https://ci.inria.fr/clinicadl/buildStatus/icon?job=AD-DL%2Fdev\" alt=\"Build Status\">\n  </a>\n  <a href=\"https://badge.fury.io/py/clinicadl\">\n    <img src=\"https://badge.fury.io/py/clinicadl.svg\" alt=\"PyPI version\">\n  </a>\n  <a href='https://clinicadl.readthedocs.io/en/latest/?badge=latest'>\n    <img src='https://readthedocs.org/projects/clinicadl/badge/?version=latest' alt='Documentation Status' />\n  </a>\n  <a href='https://pepy.tech/project/clinicadl'>\n    <img src='https://static.pepy.tech/badge/clinicadl/month' alt='Downloads' />\n  </a>\n</p>\n\n<p align=\"center\">\n  <a href=\"https://clinicadl.readthedocs.io/\">Documentation</a> |\n  <a href=\"https://aramislab.paris.inria.fr/clinicadl/tuto\">Tutorial</a> |\n  <a href=\"https://groups.google.com/forum/#!forum/clinica-user\">Forum</a>\n</p>\n\n\n## About the project\n\nThis repository hosts ClinicaDL, the deep learning extension of [Clinica](https://github.com/aramis-lab/clinica), \na python library to process neuroimaging data in [BIDS](https://bids.neuroimaging.io/index.html) format.\n\n> **Disclaimer:** this software is **under development**. Some features can\nchange between different releases and/or commits.\n\nTo access the full documentation of the project, follow the link \n[https://clinicadl.readthedocs.io/](https://clinicadl.readthedocs.io/). \nIf you find a problem when using it or if you want to provide us feedback,\nplease [open an issue](https://github.com/aramis-lab/ad-dl/issues) or write on\nthe [forum](https://groups.google.com/forum/#!forum/clinica-user).\n\n## Getting started\nClinicaDL currently supports macOS and Linux.\n\nWe recommend to use `conda` or `virtualenv` for the installation of ClinicaDL\nas it guarantees the correct management of libraries depending on common\npackages:\n\n```{.sourceCode .bash}\nconda create --name ClinicaDL python=3.8\nconda activate ClinicaDL\npip install clinicadl\n```\n\n## Tutorial \nVisit our [hands-on tutorial web\nsite](https://aramislab.paris.inria.fr/clinicadl/tuto) to start\nusing **ClinicaDL** directly in a Google Colab instance!\n\n## Related Repositories\n\n- [Clinica: Software platform for clinical neuroimaging studies](https://github.com/aramis-lab/clinica)\n- [AD-DL: Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation](https://github.com/aramis-lab/AD-DL)\n- [AD-ML: Framework for the reproducible classification of Alzheimer's disease using machine learning](https://github.com/aramis-lab/AD-ML)\n\n## Citing us\n\n- Thibeau-Sutre, E., D\u00edaz, M., Hassanaly, R., Routier, A., Dormont, D., Colliot, O., Burgos, N.: \u2018ClinicaDL: an open-source deep learning software for reproducible neuroimaging processing\u2018, 2021. [hal-03351976](https://hal.inria.fr/hal-03351976)\n- Routier, A., Burgos, N., D\u00edaz, M., Bacci, M., Bottani, S., El-Rifai O., Fontanella, S., Gori, P., Guillon, J., Guyot, A., Hassanaly, R., Jacquemont, T.,  Lu, P., Marcoux, A.,  Moreau, T., Samper-Gonz\u00e1lez, J., Teichmann, M., Thibeau-Sutre, E., Vaillant G., Wen, J., Wild, A., Habert, M.-O., Durrleman, S., and Colliot, O.: \u2018Clinica: An Open Source Software Platform for Reproducible Clinical Neuroscience Studies\u2019, 2021. [doi:10.3389/fninf.2021.689675](https://doi.org/10.3389/fninf.2021.689675) [Open Access version](https://hal.inria.fr/hal-02308126)\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Framework for the reproducible processing of neuroimaging data with deep learning methods",
    "version": "1.6.1",
    "project_urls": {
        "Documentation": "https://clinicadl.readthedocs.io",
        "Homepage": "https://clinicadl.readthedocs.io",
        "Repository": "https://github.com/aramis-lab/clinicadl.git"
    },
    "split_keywords": [
        "bids",
        " image processing",
        " deep learning",
        " neuroimaging",
        " neuroscience"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "19814e62b717480907921db269341933ce9549f19a6f64a11d033172713280e2",
                "md5": "dd612798e86a24ccd962bd2d2282d4c3",
                "sha256": "abe38c1a578e84394d6dc01a64f1da7a57f0e81273123ffc0355eee7d4c842da"
            },
            "downloads": -1,
            "filename": "clinicadl-1.6.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dd612798e86a24ccd962bd2d2282d4c3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.8",
            "size": 237191,
            "upload_time": "2024-04-05T11:42:41",
            "upload_time_iso_8601": "2024-04-05T11:42:41.680323Z",
            "url": "https://files.pythonhosted.org/packages/19/81/4e62b717480907921db269341933ce9549f19a6f64a11d033172713280e2/clinicadl-1.6.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "33dc31a01c2f0c47e748c822da45155db2b05be1d3b4f09a87df980553398ffd",
                "md5": "c74eee9ff9ab399f12b654a95da1b635",
                "sha256": "3aede4400129053e16a4379fed9cf0b040c0610a6cec876bc07ea7436d8f9841"
            },
            "downloads": -1,
            "filename": "clinicadl-1.6.1.tar.gz",
            "has_sig": false,
            "md5_digest": "c74eee9ff9ab399f12b654a95da1b635",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.8",
            "size": 170886,
            "upload_time": "2024-04-05T11:42:43",
            "upload_time_iso_8601": "2024-04-05T11:42:43.869718Z",
            "url": "https://files.pythonhosted.org/packages/33/dc/31a01c2f0c47e748c822da45155db2b05be1d3b4f09a87df980553398ffd/clinicadl-1.6.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-05 11:42:43",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "aramis-lab",
    "github_project": "clinicadl",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "clinicadl"
}
        
Elapsed time: 0.78607s