clipcrop


Nameclipcrop JSON
Version 2.5.0 PyPI version JSON
download
home_pagehttps://github.com/Vishnunkumar/clipcrop/
SummaryExtract sections from your image by using OpenAI CLIP and Facebooks Detr implemented on HuggingFace Transformers
upload_time2024-09-08 14:37:51
maintainerNone
docs_urlNone
authorVishnu Nandakumar
requires_pythonNone
licenseMIT license
keywords clipcrop
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # clipcrop
- Extract sections of images from your image by using OpenAI's CLIP and YoloSmall implemented on HuggingFace Transformers
- Added new capability for segmentation using CLIP and Detr segmentation models

# Installation
```python
pip install clipcrop
```

## Clip Crop

Extract sections of images from your image by using OpenAI's CLIP and YoloSmall implemented on HuggingFace Transformers 

### Extraction

```python
from clipcrop import clipcrop

cc = clipcrop.ClipCrop("/content/sample.jpg")

DFE, DM, CLIPM, CLIPP = cc.load_models()

result = cc.extract_image(DFE, DM, CLIPM, CLIPP, "text content", num=2)

```

<!-- 
### Result

<p style="font-style: italic;">clipcrop = ClipCrop("/content/nm.jpg", "woman in white frock")</p>
<p float="left">
<img src="/nm.jpg" width="600" height="350">
<img src="/clipcrop.jpeg" width="150" height="300">
</p>

<br>

<p style="font-style: italic;">cc = ClipCrop('/content/rd.jpg', 'woman walking', 2)</p>
<p float="left">
<img src="/rd.jpg" width="600" height="350">
<img src="/rmc.jpeg" width="150" height="300">
</p> -->

### Captcha
Solve captacha images using CLIP and Object detection models. Ensure Tesseract is installed and executable in your path

```python
from clipcrop import clipcrop

cc = clipcrop.ClipCrop(image_path)

DFE, DM, CLIPM, CLIPP = cc.load_models()

result = cc.auto_captcha(CLIPM, CLIPP, 4)

```

## Clip Segmentation

Segment out images using Detr Panoptic segmentation pipeline and leverage CLIP models to derive the most probable one for your query

### Extraction

```python

from clipcrop import clipcrop

clipseg = clipcrop.ClipSeg("/content/input.png", "black colored car")

segmentor, clipmodel, clipprocessor = clipseg.load_models()

result = clipseg.segment_image(segmentor, clipmodel, clipprocessor)

```

### Remove Background
```python

from clipcrop import clipcrop

clipseg = clipcrop.ClipSeg("/content/input.png", "black colored car")

result = clipseg.remove_background()

```

### Other projects
- [SnapCode : Extract code blocks from images mixed with normal text](https://github.com/Vishnunkumar/snapcode)
- [HuggingFaceInference: Inference of different uses cases of finetued models](https://github.com/Vishnunkumar/huggingfaceinference)

### Contact
- Feel free to contact me on "nkumarvishnu25@gmail.com"

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Vishnunkumar/clipcrop/",
    "name": "clipcrop",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "clipcrop",
    "author": "Vishnu Nandakumar",
    "author_email": "nkumarvishnu25@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/75/23/a069505386ee143d3d9605f508d24f218d0aab3107e245dc503ae0c29588/clipcrop-2.5.0.tar.gz",
    "platform": null,
    "description": "# clipcrop\n- Extract sections of images from your image by using OpenAI's CLIP and YoloSmall implemented on HuggingFace Transformers\n- Added new capability for segmentation using CLIP and Detr segmentation models\n\n# Installation\n```python\npip install clipcrop\n```\n\n## Clip Crop\n\nExtract sections of images from your image by using OpenAI's CLIP and YoloSmall implemented on HuggingFace Transformers \n\n### Extraction\n\n```python\nfrom clipcrop import clipcrop\n\ncc = clipcrop.ClipCrop(\"/content/sample.jpg\")\n\nDFE, DM, CLIPM, CLIPP = cc.load_models()\n\nresult = cc.extract_image(DFE, DM, CLIPM, CLIPP, \"text content\", num=2)\n\n```\n\n<!-- \n### Result\n\n<p style=\"font-style: italic;\">clipcrop = ClipCrop(\"/content/nm.jpg\", \"woman in white frock\")</p>\n<p float=\"left\">\n<img src=\"/nm.jpg\" width=\"600\" height=\"350\">\n<img src=\"/clipcrop.jpeg\" width=\"150\" height=\"300\">\n</p>\n\n<br>\n\n<p style=\"font-style: italic;\">cc = ClipCrop('/content/rd.jpg', 'woman walking', 2)</p>\n<p float=\"left\">\n<img src=\"/rd.jpg\" width=\"600\" height=\"350\">\n<img src=\"/rmc.jpeg\" width=\"150\" height=\"300\">\n</p> -->\n\n### Captcha\nSolve captacha images using CLIP and Object detection models. Ensure Tesseract is installed and executable in your path\n\n```python\nfrom clipcrop import clipcrop\n\ncc = clipcrop.ClipCrop(image_path)\n\nDFE, DM, CLIPM, CLIPP = cc.load_models()\n\nresult = cc.auto_captcha(CLIPM, CLIPP, 4)\n\n```\n\n## Clip Segmentation\n\nSegment out images using Detr Panoptic segmentation pipeline and leverage CLIP models to derive the most probable one for your query\n\n### Extraction\n\n```python\n\nfrom clipcrop import clipcrop\n\nclipseg = clipcrop.ClipSeg(\"/content/input.png\", \"black colored car\")\n\nsegmentor, clipmodel, clipprocessor = clipseg.load_models()\n\nresult = clipseg.segment_image(segmentor, clipmodel, clipprocessor)\n\n```\n\n### Remove Background\n```python\n\nfrom clipcrop import clipcrop\n\nclipseg = clipcrop.ClipSeg(\"/content/input.png\", \"black colored car\")\n\nresult = clipseg.remove_background()\n\n```\n\n### Other projects\n- [SnapCode : Extract code blocks from images mixed with normal text](https://github.com/Vishnunkumar/snapcode)\n- [HuggingFaceInference: Inference of different uses cases of finetued models](https://github.com/Vishnunkumar/huggingfaceinference)\n\n### Contact\n- Feel free to contact me on \"nkumarvishnu25@gmail.com\"\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "Extract sections from your image by using OpenAI CLIP and Facebooks Detr implemented on HuggingFace Transformers",
    "version": "2.5.0",
    "project_urls": {
        "Homepage": "https://github.com/Vishnunkumar/clipcrop/"
    },
    "split_keywords": [
        "clipcrop"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8d021181a48499e49e17bc28b70d14ad1a9c4e7b20c1ee2c69f540de2815978a",
                "md5": "75fae7c27a0811207e69cc686de1d2cd",
                "sha256": "96e69a9854c17b464545f85d9b92b3ffe63a68678ee3849fe0c4b75ba20072cc"
            },
            "downloads": -1,
            "filename": "clipcrop-2.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "75fae7c27a0811207e69cc686de1d2cd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6291,
            "upload_time": "2024-09-08T14:37:50",
            "upload_time_iso_8601": "2024-09-08T14:37:50.087970Z",
            "url": "https://files.pythonhosted.org/packages/8d/02/1181a48499e49e17bc28b70d14ad1a9c4e7b20c1ee2c69f540de2815978a/clipcrop-2.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7523a069505386ee143d3d9605f508d24f218d0aab3107e245dc503ae0c29588",
                "md5": "a62601a2f19834187402eb275b0abb4e",
                "sha256": "8c43076578872459c54439c8c29510421111331d13f6a5454ebe763a48efcc45"
            },
            "downloads": -1,
            "filename": "clipcrop-2.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a62601a2f19834187402eb275b0abb4e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5680,
            "upload_time": "2024-09-08T14:37:51",
            "upload_time_iso_8601": "2024-09-08T14:37:51.445231Z",
            "url": "https://files.pythonhosted.org/packages/75/23/a069505386ee143d3d9605f508d24f218d0aab3107e245dc503ae0c29588/clipcrop-2.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-08 14:37:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Vishnunkumar",
    "github_project": "clipcrop",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "clipcrop"
}
        
Elapsed time: 0.34876s