cloudml-hypertune


Namecloudml-hypertune JSON
Version 0.1.0.dev6 PyPI version JSON
download
home_pagehttp://github.com/GoogleCloudPlatform/cloudml-hypertune
SummaryA library to report Google CloudML Engine HyperTune metrics.
upload_time2019-12-18 22:43:48
maintainer
docs_urlNone
authorGoogle CloudML Engine
requires_python
licenseApache Software License
keywords ml hyperparameter tuning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            Metric Reporting Python Package for CloudML Hypertune
=====================================================
    Helper Functions for CloudML Engine Hypertune Services.

.. _Google CloudML Engine Hyperparameter Tuning Service: https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview

|pypi| |versions|

Prerequisites
-------------

-  Google CloudML Engine `Overview <https://cloud.google.com/ml-engine/>`__.

-  Google CloudML Engine `Hyperparameter Tuning
   Overview <https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview>`__.

Installation
------------
Install via `pip <https://pypi.python.org/pypi/pip>`__:

::

    pip install cloudml-hypertune

Usage
-----

.. code:: python

    import hypertune

    hpt = hypertune.HyperTune()
    hpt.report_hyperparameter_tuning_metric(
        hyperparameter_metric_tag='my_metric_tag',
        metric_value=0.987,
        global_step=1000)

By default, the metric entries will be stored to ``/tmp/hypertune/outout.metric`` in json format:

::

    {"global_step": "1000", "my_metric_tag": "0.987", "timestamp": 1525851440.123456, "trial": "0"}

Licensing
---------

- Apache 2.0

.. |pypi| image:: https://img.shields.io/pypi/v/cloudml-hypertune.svg
   :target: https://pypi.org/project/cloudml-hypertune/
.. |versions| image:: https://img.shields.io/pypi/pyversions/cloudml-hypertune.svg
   :target: https://pypi.org/project/cloudml-hypertune/
            

Raw data

            {
    "_id": null,
    "home_page": "http://github.com/GoogleCloudPlatform/cloudml-hypertune",
    "name": "cloudml-hypertune",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "ml hyperparameter tuning",
    "author": "Google CloudML Engine",
    "author_email": "cloudml-feedback@google.com",
    "download_url": "https://files.pythonhosted.org/packages/84/54/142a00a29d1c51dcf8c93b305f35554c947be2faa0d55de1eabcc0a9023c/cloudml-hypertune-0.1.0.dev6.tar.gz",
    "platform": "",
    "description": "Metric Reporting Python Package for CloudML Hypertune\n=====================================================\n    Helper Functions for CloudML Engine Hypertune Services.\n\n.. _Google CloudML Engine Hyperparameter Tuning Service: https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview\n\n|pypi| |versions|\n\nPrerequisites\n-------------\n\n-  Google CloudML Engine `Overview <https://cloud.google.com/ml-engine/>`__.\n\n-  Google CloudML Engine `Hyperparameter Tuning\n   Overview <https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview>`__.\n\nInstallation\n------------\nInstall via `pip <https://pypi.python.org/pypi/pip>`__:\n\n::\n\n    pip install cloudml-hypertune\n\nUsage\n-----\n\n.. code:: python\n\n    import hypertune\n\n    hpt = hypertune.HyperTune()\n    hpt.report_hyperparameter_tuning_metric(\n        hyperparameter_metric_tag='my_metric_tag',\n        metric_value=0.987,\n        global_step=1000)\n\nBy default, the metric entries will be stored to ``/tmp/hypertune/outout.metric`` in json format:\n\n::\n\n    {\"global_step\": \"1000\", \"my_metric_tag\": \"0.987\", \"timestamp\": 1525851440.123456, \"trial\": \"0\"}\n\nLicensing\n---------\n\n- Apache 2.0\n\n.. |pypi| image:: https://img.shields.io/pypi/v/cloudml-hypertune.svg\n   :target: https://pypi.org/project/cloudml-hypertune/\n.. |versions| image:: https://img.shields.io/pypi/pyversions/cloudml-hypertune.svg\n   :target: https://pypi.org/project/cloudml-hypertune/",
    "bugtrack_url": null,
    "license": "Apache Software License",
    "summary": "A library to report Google CloudML Engine HyperTune metrics.",
    "version": "0.1.0.dev6",
    "split_keywords": [
        "ml",
        "hyperparameter",
        "tuning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "9c035ad0126ec84199943df2ae0afc0c",
                "sha256": "b96a5a203ecf7b3302e94f63977d7293fe21c696bea27e35667de82599696a89"
            },
            "downloads": -1,
            "filename": "cloudml-hypertune-0.1.0.dev6.tar.gz",
            "has_sig": false,
            "md5_digest": "9c035ad0126ec84199943df2ae0afc0c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3188,
            "upload_time": "2019-12-18T22:43:48",
            "upload_time_iso_8601": "2019-12-18T22:43:48.742739Z",
            "url": "https://files.pythonhosted.org/packages/84/54/142a00a29d1c51dcf8c93b305f35554c947be2faa0d55de1eabcc0a9023c/cloudml-hypertune-0.1.0.dev6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2019-12-18 22:43:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "GoogleCloudPlatform",
    "github_project": "cloudml-hypertune",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "lcname": "cloudml-hypertune"
}
        
Elapsed time: 0.01515s