clusopt-core


Nameclusopt-core JSON
Version 1.1.7 PyPI version JSON
download
home_pagehttps://github.com/giuliano-oliveira/clusopt_core
SummaryClustream, Streamkm++ and metrics utilities C/C++ bindings for python
upload_time2024-09-14 13:19:39
maintainerNone
docs_urlNone
authorGiuliano Oliveira De Macedo
requires_python>=3.6
licenseGPLv3
keywords data-stream clustering silhouette
VCS
bugtrack_url
requirements scikit-learn
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ClusOpt Core

<a href="https://pypi.python.org/pypi/clusopt_core"><img src="https://img.shields.io/pypi/v/clusopt_core.svg"></a>


This package is used by [ClusOpt](https://github.com/giuliano-oliveira/clusopt) for 
it's CPU intensive tasks, but it can be easily imported in any python data stream clustering project,
it is coded mainly in C/C++ with bindings for python, and features:

* CluStream (based on MOA implementation)
* StreamKM++ (wrapped around the original paper authors implementation)
* Distance Matrix computation (in place implementation using boost threads)
* Silhouette score (custom in place implementation inspired by BIRCH clustering vector)

## Prerequisites

* python >= 3.6
* pip
* boost-thread
* gcc >= 6

`boost-thread` can be installed in Debian based systems with :
```bash
apt install libboost-thread-dev
```

## Usage

See `examples` folder for more.

### CluStream online clustering

```python
from clusopt_core.cluster import CluStream
from sklearn.datasets import make_blobs
import numpy as np
import matplotlib.pyplot as plt

k = 32

dataset, _ = make_blobs(n_samples=64000, centers=k, random_state=42, cluster_std=0.1)

model = CluStream(
    m=k * 10,  # no microclusters
    h=64000,  # horizon
    t=2,  # radius factor
)

chunks = np.split(dataset, len(dataset) / 4000)

model.init_offline(chunks.pop(0), seed=42)

for chunk in chunks:
    model.partial_fit(chunk)

clusters, _ = model.get_macro_clusters(k, seed=42)

plt.scatter(*dataset.T, marker=",", label="datapoints")

plt.scatter(*model.get_partial_cluster_centers().T, marker=".", label="microclusters")

plt.scatter(*clusters.T, marker="x", label="macro clusters", color="black")

plt.legend()
plt.show()
```
output:

![clustream clustering results](https://github.com/giuliano-oliveira/clusopt_core/blob/master/examples/clustream.jpeg?raw=true) 

## Benchmarks
Some functions in clusopt_core are faster than scikit learn implementations, see  the `benchmark` folder for more info.

### Silhouette
Each bar have a tuple of (no_samples,dimension,no_groups), so independently of those 3 factors, clusopt implementation is faster.

![clusopt silhouette versus scikit learn silhouette execution time](https://github.com/giuliano-oliveira/clusopt_core/blob/master/benchmark/silhouette.jpeg?raw=true)

### Distance Matrix

Each bar shows the dataset dimension, so clusopt_core implemetation is faster when the dataset dimension is small (<~150), even when using 4 processes in scikit-learn.

![clusopt distance matrix versus scikit learn pairwise distance in execution time](https://github.com/giuliano-oliveira/clusopt_core/blob/master/benchmark/dist_matrix.jpeg?raw=true)

## Installation
You can install it directly from pypi with 
```bash
pip install clusopt-core
```
or you can clone this repo and install from the directory
```bash
pip install ./clusopt_core
```
## Acknowledgments

#### Thanks to:
* **Marcel R. Ackermann et al.** for the StreamKM++ algorithm - [link](https://cs.uni-paderborn.de/cuk/forschung/abgeschlossene-projekte/dfg-schwerpunktprogramm-1307/streamkm/)
* **The university of Waikato** for the MOA framework - [link](https://moa.cms.waikato.ac.nz/)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/giuliano-oliveira/clusopt_core",
    "name": "clusopt-core",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "data-stream, clustering, silhouette",
    "author": "Giuliano Oliveira De Macedo",
    "author_email": "giuliano.llpinokio@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/08/82/17b6fe24450276675c0f25f09c30531823b7330a44d808cd6a1d0d8e610d/clusopt_core-1.1.7.tar.gz",
    "platform": null,
    "description": "# ClusOpt Core\n\n<a href=\"https://pypi.python.org/pypi/clusopt_core\"><img src=\"https://img.shields.io/pypi/v/clusopt_core.svg\"></a>\n\n\nThis package is used by [ClusOpt](https://github.com/giuliano-oliveira/clusopt) for \nit's CPU intensive tasks, but it can be easily imported in any python data stream clustering project,\nit is coded mainly in C/C++ with bindings for python, and features:\n\n* CluStream (based on MOA implementation)\n* StreamKM++ (wrapped around the original paper authors implementation)\n* Distance Matrix computation (in place implementation using boost threads)\n* Silhouette score (custom in place implementation inspired by BIRCH clustering vector)\n\n## Prerequisites\n\n* python >= 3.6\n* pip\n* boost-thread\n* gcc >= 6\n\n`boost-thread` can be installed in Debian based systems with :\n```bash\napt install libboost-thread-dev\n```\n\n## Usage\n\nSee `examples` folder for more.\n\n### CluStream online clustering\n\n```python\nfrom clusopt_core.cluster import CluStream\nfrom sklearn.datasets import make_blobs\nimport numpy as np\nimport matplotlib.pyplot as plt\n\nk = 32\n\ndataset, _ = make_blobs(n_samples=64000, centers=k, random_state=42, cluster_std=0.1)\n\nmodel = CluStream(\n    m=k * 10,  # no microclusters\n    h=64000,  # horizon\n    t=2,  # radius factor\n)\n\nchunks = np.split(dataset, len(dataset) / 4000)\n\nmodel.init_offline(chunks.pop(0), seed=42)\n\nfor chunk in chunks:\n    model.partial_fit(chunk)\n\nclusters, _ = model.get_macro_clusters(k, seed=42)\n\nplt.scatter(*dataset.T, marker=\",\", label=\"datapoints\")\n\nplt.scatter(*model.get_partial_cluster_centers().T, marker=\".\", label=\"microclusters\")\n\nplt.scatter(*clusters.T, marker=\"x\", label=\"macro clusters\", color=\"black\")\n\nplt.legend()\nplt.show()\n```\noutput:\n\n![clustream clustering results](https://github.com/giuliano-oliveira/clusopt_core/blob/master/examples/clustream.jpeg?raw=true) \n\n## Benchmarks\nSome functions in clusopt_core are faster than scikit learn implementations, see  the `benchmark` folder for more info.\n\n### Silhouette\nEach bar have a tuple of (no_samples,dimension,no_groups), so independently of those 3 factors, clusopt implementation is faster.\n\n![clusopt silhouette versus scikit learn silhouette execution time](https://github.com/giuliano-oliveira/clusopt_core/blob/master/benchmark/silhouette.jpeg?raw=true)\n\n### Distance Matrix\n\nEach bar shows the dataset dimension, so clusopt_core implemetation is faster when the dataset dimension is small (<~150), even when using 4 processes in scikit-learn.\n\n![clusopt distance matrix versus scikit learn pairwise distance in execution time](https://github.com/giuliano-oliveira/clusopt_core/blob/master/benchmark/dist_matrix.jpeg?raw=true)\n\n## Installation\nYou can install it directly from pypi with \n```bash\npip install clusopt-core\n```\nor you can clone this repo and install from the directory\n```bash\npip install ./clusopt_core\n```\n## Acknowledgments\n\n#### Thanks to:\n* **Marcel R. Ackermann et al.** for the StreamKM++ algorithm - [link](https://cs.uni-paderborn.de/cuk/forschung/abgeschlossene-projekte/dfg-schwerpunktprogramm-1307/streamkm/)\n* **The university of Waikato** for the MOA framework - [link](https://moa.cms.waikato.ac.nz/)\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "Clustream, Streamkm++ and metrics utilities C/C++ bindings for python",
    "version": "1.1.7",
    "project_urls": {
        "Download": "https://github.com/giuliano-oliveira/clusopt_core/archive/v1.1.7.tar.gz",
        "Homepage": "https://github.com/giuliano-oliveira/clusopt_core"
    },
    "split_keywords": [
        "data-stream",
        " clustering",
        " silhouette"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "088217b6fe24450276675c0f25f09c30531823b7330a44d808cd6a1d0d8e610d",
                "md5": "a0e56aebd2e2741cc7ec0bccba300c96",
                "sha256": "e2208df62b077c09bf9be210728e88ed63b6407598fa6e6aab588b5d6862f3e2"
            },
            "downloads": -1,
            "filename": "clusopt_core-1.1.7.tar.gz",
            "has_sig": false,
            "md5_digest": "a0e56aebd2e2741cc7ec0bccba300c96",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 37091,
            "upload_time": "2024-09-14T13:19:39",
            "upload_time_iso_8601": "2024-09-14T13:19:39.434267Z",
            "url": "https://files.pythonhosted.org/packages/08/82/17b6fe24450276675c0f25f09c30531823b7330a44d808cd6a1d0d8e610d/clusopt_core-1.1.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-14 13:19:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "giuliano-oliveira",
    "github_project": "clusopt_core",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "0.23.1"
                ]
            ]
        }
    ],
    "lcname": "clusopt-core"
}
        
Elapsed time: 0.30222s