clusterops


Nameclusterops JSON
Version 0.0.6 PyPI version JSON
download
home_pagehttps://github.com/The-Swarm-Corporation/ClusterOps
SummaryPaper - Pytorch
upload_time2024-10-31 05:02:32
maintainerNone
docs_urlNone
authorKye Gomez
requires_python<4.0,>=3.10
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ClusterOps

[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)

[![License](https://img.shields.io/badge/license-MIT-blue.svg)](LICENSE)
[![Python Version](https://img.shields.io/badge/python-3.8%2B-brightgreen.svg)](https://python.org)
[![Build Status](https://img.shields.io/github/actions/workflow/status/swarms-team/clusterops/test.yml?branch=master)](https://github.com/swarms-team/clusterops/actions)
[![Coverage Status](https://img.shields.io/codecov/c/github/swarms-team/clusterops)](https://codecov.io/gh/swarms-team/clusterops)


**ClusterOps** is an enterprise-grade Python library developed and maintained by the **Swarms Team** to help you manage and execute agents on specific **CPUs** and **GPUs** across clusters. This tool enables advanced CPU and GPU selection, dynamic task allocation, and resource monitoring, making it ideal for high-performance distributed computing environments.







---

## Features

- **CPU Execution**: Dynamically assign tasks to specific CPU cores.
- **GPU Execution**: Execute tasks on specific GPUs or dynamically select the best available GPU based on memory usage.
- **Fault Tolerance**: Built-in retry logic with exponential backoff for handling transient errors.
- **Resource Monitoring**: Real-time CPU and GPU resource monitoring (e.g., free memory on GPUs).
- **Logging**: Advanced logging configuration with customizable log levels (DEBUG, INFO, ERROR).
- **Scalability**: Supports multi-GPU task execution with Ray for distributed computation.

---


## Installation


```bash
pip3 install -U clusterops
```

---

## Quick Start

The following example demonstrates how to use ClusterOps to run tasks on specific CPUs and GPUs.

```python
from clusterops import (
   list_available_cpus,
   execute_with_cpu_cores,
   list_available_gpus,
   execute_on_gpu,
   execute_on_multiple_gpus,
)

# Example function to run
def sample_task(n: int) -> int:
    return n * n


# List CPUs and execute on CPU 0
cpus = list_available_cpus()
execute_on_cpu(0, sample_task, 10)

# List CPUs and execute using 4 CPU cores
execute_with_cpu_cores(4, sample_task, 10)

# List GPUs and execute on GPU 0
gpus = list_available_gpus()
execute_on_gpu(0, sample_task, 10)

# Execute across multiple GPUs
execute_on_multiple_gpus([0, 1], sample_task, 10)

```

## GPU Scheduler

The GPU Scheduler is a Ray Serve deployment that manages job execution with fault tolerance, job retries, and scaling. It uses the GPUJobExecutor to execute tasks on available GPUs.

See the [GPU Scheduler](/clusterops/gpu_scheduler.py) for more details.

```python
from clusterops import gpu_scheduler


async def sample_task(n: int) -> int:
    return n * n


print(gpu_scheduler(sample_task, priority=1, n=10))

```


---

## Configuration

ClusterOps provides configuration through environment variables, making it adaptable for different environments (development, staging, production).

### Environment Variables

- **`LOG_LEVEL`**: Configures logging verbosity. Options: `DEBUG`, `INFO`, `ERROR`. Default is `INFO`.
- **`RETRY_COUNT`**: Number of times to retry a task in case of failure. Default is 3.
- **`RETRY_DELAY`**: Initial delay in seconds before retrying. Default is 1 second.

Set these variables in your environment:

```bash
export LOG_LEVEL=DEBUG
export RETRY_COUNT=5
export RETRY_DELAY=2.0
```

-----

## Docs

---

### `list_available_cpus() -> List[int]`

**Description:**  
Lists all available CPU cores on the system.

**Returns:**  
- `List[int]`: A list of available CPU core indices.

**Raises:**  
- `RuntimeError`: If no CPUs are found.

**Example Usage:**

```python
cpus = list_available_cpus()
print(f"Available CPUs: {cpus}")
```

---

### `select_best_gpu() -> Optional[int]`

**Description:**  
Selects the GPU with the most free memory.

**Returns:**  
- `Optional[int]`: The GPU ID of the best available GPU, or `None` if no GPUs are available.

**Example Usage:**

```python
best_gpu = select_best_gpu()
print(f"Best GPU ID: {best_gpu}")
```

---

### `execute_on_cpu(cpu_id: int, func: Callable, *args: Any, **kwargs: Any) -> Any`

**Description:**  
Executes a function on a specific CPU core.

**Arguments:**  
- `cpu_id (int)`: The CPU core to run the function on.
- `func (Callable)`: The function to be executed.
- `*args (Any)`: Positional arguments for the function.
- `**kwargs (Any)`: Keyword arguments for the function.

**Returns:**  
- `Any`: The result of the function execution.

**Raises:**  
- `ValueError`: If the CPU core specified is invalid.
- `RuntimeError`: If there is an error executing the function on the CPU.

**Example Usage:**

```python
result = execute_on_cpu(0, sample_task, 10)
print(f"Result: {result}")
```

---

### `retry_with_backoff(func: Callable, retries: int = RETRY_COUNT, delay: float = RETRY_DELAY, *args: Any, **kwargs: Any) -> Any`

**Description:**  
Retries a function with exponential backoff in case of failure.

**Arguments:**  
- `func (Callable)`: The function to execute with retries.
- `retries (int)`: Number of retries. Defaults to `RETRY_COUNT`.
- `delay (float)`: Delay between retries in seconds. Defaults to `RETRY_DELAY`.
- `*args (Any)`: Positional arguments for the function.
- `**kwargs (Any)`: Keyword arguments for the function.

**Returns:**  
- `Any`: The result of the function execution.

**Raises:**  
- `Exception`: After all retries fail.

**Example Usage:**

```python
result = retry_with_backoff(sample_task, retries=5, delay=2, n=10)
print(f"Result after retries: {result}")
```

---

### `execute_with_cpu_cores(core_count: int, func: Callable, *args: Any, **kwargs: Any) -> Any`

**Description:**  
Executes a function using a specified number of CPU cores.

**Arguments:**  
- `core_count (int)`: The number of CPU cores to run the function on.
- `func (Callable)`: The function to be executed.
- `*args (Any)`: Positional arguments for the function.
- `**kwargs (Any)`: Keyword arguments for the function.

**Returns:**  
- `Any`: The result of the function execution.

**Raises:**  
- `ValueError`: If the number of CPU cores specified is invalid or exceeds available cores.
- `RuntimeError`: If there is an error executing the function on the specified CPU cores.

**Example Usage:**

```python
result = execute_with_cpu_cores(4, sample_task, 10)
print(f"Result: {result}")
```

---

### `list_available_gpus() -> List[str]`

**Description:**  
Lists all available GPUs on the system.

**Returns:**  
- `List[str]`: A list of available GPU names.

**Raises:**  
- `RuntimeError`: If no GPUs are found.

**Example Usage:**

```python
gpus = list_available_gpus()
print(f"Available GPUs: {gpus}")
```

---

### `execute_on_gpu(gpu_id: int, func: Callable, *args: Any, **kwargs: Any) -> Any`

**Description:**  
Executes a function on a specific GPU using Ray.

**Arguments:**  
- `gpu_id (int)`: The GPU to run the function on.
- `func (Callable)`: The function to be executed.
- `*args (Any)`: Positional arguments for the function.
- `**kwargs (Any)`: Keyword arguments for the function.

**Returns:**  
- `Any`: The result of the function execution.

**Raises:**  
- `ValueError`: If the GPU index is invalid.
- `RuntimeError`: If there is an error executing the function on the GPU.

**Example Usage:**

```python
result = execute_on_gpu(0, sample_task, 10)
print(f"Result: {result}")
```

---

### `execute_on_multiple_gpus(gpu_ids: List[int], func: Callable, *args: Any, **kwargs: Any) -> List[Any]`

**Description:**  
Executes a function across multiple GPUs using Ray.

**Arguments:**  
- `gpu_ids (List[int])`: The list of GPU IDs to run the function on.
- `func (Callable)`: The function to be executed.
- `*args (Any)`: Positional arguments for the function.
- `**kwargs (Any)`: Keyword arguments for the function.

**Returns:**  
- `List[Any]`: A list of results from the execution on each GPU.

**Raises:**  
- `ValueError`: If any GPU index is invalid.
- `RuntimeError`: If there is an error executing the function on the GPUs.

**Example Usage:**

```python
result = execute_on_multiple_gpus([0, 1], sample_task, 10)
print(f"Results: {result}")
```

---

### `sample_task(n: int) -> int`

**Description:**  
A sample task function that returns the square of a number.

**Arguments:**  
- `n (int)`: Input number to be squared.

**Returns:**  
- `int`: The square of the input number.

**Example Usage:**

```python
result = sample_task(10)
print(f"Square of 10: {result}")
```

---

This documentation provides a clear description of the function's purpose, arguments, return values, potential exceptions, and examples of how to use them.


---

## Contributing

We welcome contributions to ClusterOps! If you'd like to contribute, please follow these steps:

1. **Fork the repository** on GitHub.
2. **Clone your fork** locally:
   ```bash
   git clone https://github.com/The-Swarm-Corporation/ClusterOps.git
   cd clusterops
   ```
3. **Create a feature branch** for your changes:
   ```bash
   git checkout -b feature/new-feature
   ```
4. **Install the development dependencies**:
   ```bash
   pip install -r dev-requirements.txt
   ```
5. **Make your changes**, and be sure to include tests.
6. **Run tests** to ensure everything works:
   ```bash
   pytest
   ```
7. **Commit your changes** and push them to GitHub:
   ```bash
   git commit -m "Add new feature"
   git push origin feature/new-feature
   ```
8. **Submit a pull request** on GitHub, and we’ll review it as soon as possible.

### Reporting Issues

If you encounter any issues, please create a [GitHub issue](https://github.com/the-swarm-corporation/clusterops/issues).


## Further Documentation

[CLICK HERE](/DOCS.md)

---

## License

ClusterOps is licensed under the MIT License. See the [LICENSE](LICENSE) file for more details.

---

## Contact

For any questions, feedback, or contributions, please contact the **Swarms Team** at [kye@swarms.world](mailto:kye@swarms.world).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/The-Swarm-Corporation/ClusterOps",
    "name": "clusterops",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/56/0a/0a96b345feeb663a80bacdd294335e7d795fbac42d90015f520417163cab/clusterops-0.0.6.tar.gz",
    "platform": null,
    "description": "# ClusterOps\n\n[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)\n\n[![License](https://img.shields.io/badge/license-MIT-blue.svg)](LICENSE)\n[![Python Version](https://img.shields.io/badge/python-3.8%2B-brightgreen.svg)](https://python.org)\n[![Build Status](https://img.shields.io/github/actions/workflow/status/swarms-team/clusterops/test.yml?branch=master)](https://github.com/swarms-team/clusterops/actions)\n[![Coverage Status](https://img.shields.io/codecov/c/github/swarms-team/clusterops)](https://codecov.io/gh/swarms-team/clusterops)\n\n\n**ClusterOps** is an enterprise-grade Python library developed and maintained by the **Swarms Team** to help you manage and execute agents on specific **CPUs** and **GPUs** across clusters. This tool enables advanced CPU and GPU selection, dynamic task allocation, and resource monitoring, making it ideal for high-performance distributed computing environments.\n\n\n\n\n\n\n\n---\n\n## Features\n\n- **CPU Execution**: Dynamically assign tasks to specific CPU cores.\n- **GPU Execution**: Execute tasks on specific GPUs or dynamically select the best available GPU based on memory usage.\n- **Fault Tolerance**: Built-in retry logic with exponential backoff for handling transient errors.\n- **Resource Monitoring**: Real-time CPU and GPU resource monitoring (e.g., free memory on GPUs).\n- **Logging**: Advanced logging configuration with customizable log levels (DEBUG, INFO, ERROR).\n- **Scalability**: Supports multi-GPU task execution with Ray for distributed computation.\n\n---\n\n\n## Installation\n\n\n```bash\npip3 install -U clusterops\n```\n\n---\n\n## Quick Start\n\nThe following example demonstrates how to use ClusterOps to run tasks on specific CPUs and GPUs.\n\n```python\nfrom clusterops import (\n   list_available_cpus,\n   execute_with_cpu_cores,\n   list_available_gpus,\n   execute_on_gpu,\n   execute_on_multiple_gpus,\n)\n\n# Example function to run\ndef sample_task(n: int) -> int:\n    return n * n\n\n\n# List CPUs and execute on CPU 0\ncpus = list_available_cpus()\nexecute_on_cpu(0, sample_task, 10)\n\n# List CPUs and execute using 4 CPU cores\nexecute_with_cpu_cores(4, sample_task, 10)\n\n# List GPUs and execute on GPU 0\ngpus = list_available_gpus()\nexecute_on_gpu(0, sample_task, 10)\n\n# Execute across multiple GPUs\nexecute_on_multiple_gpus([0, 1], sample_task, 10)\n\n```\n\n## GPU Scheduler\n\nThe GPU Scheduler is a Ray Serve deployment that manages job execution with fault tolerance, job retries, and scaling. It uses the GPUJobExecutor to execute tasks on available GPUs.\n\nSee the [GPU Scheduler](/clusterops/gpu_scheduler.py) for more details.\n\n```python\nfrom clusterops import gpu_scheduler\n\n\nasync def sample_task(n: int) -> int:\n    return n * n\n\n\nprint(gpu_scheduler(sample_task, priority=1, n=10))\n\n```\n\n\n---\n\n## Configuration\n\nClusterOps provides configuration through environment variables, making it adaptable for different environments (development, staging, production).\n\n### Environment Variables\n\n- **`LOG_LEVEL`**: Configures logging verbosity. Options: `DEBUG`, `INFO`, `ERROR`. Default is `INFO`.\n- **`RETRY_COUNT`**: Number of times to retry a task in case of failure. Default is 3.\n- **`RETRY_DELAY`**: Initial delay in seconds before retrying. Default is 1 second.\n\nSet these variables in your environment:\n\n```bash\nexport LOG_LEVEL=DEBUG\nexport RETRY_COUNT=5\nexport RETRY_DELAY=2.0\n```\n\n-----\n\n## Docs\n\n---\n\n### `list_available_cpus() -> List[int]`\n\n**Description:**  \nLists all available CPU cores on the system.\n\n**Returns:**  \n- `List[int]`: A list of available CPU core indices.\n\n**Raises:**  \n- `RuntimeError`: If no CPUs are found.\n\n**Example Usage:**\n\n```python\ncpus = list_available_cpus()\nprint(f\"Available CPUs: {cpus}\")\n```\n\n---\n\n### `select_best_gpu() -> Optional[int]`\n\n**Description:**  \nSelects the GPU with the most free memory.\n\n**Returns:**  \n- `Optional[int]`: The GPU ID of the best available GPU, or `None` if no GPUs are available.\n\n**Example Usage:**\n\n```python\nbest_gpu = select_best_gpu()\nprint(f\"Best GPU ID: {best_gpu}\")\n```\n\n---\n\n### `execute_on_cpu(cpu_id: int, func: Callable, *args: Any, **kwargs: Any) -> Any`\n\n**Description:**  \nExecutes a function on a specific CPU core.\n\n**Arguments:**  \n- `cpu_id (int)`: The CPU core to run the function on.\n- `func (Callable)`: The function to be executed.\n- `*args (Any)`: Positional arguments for the function.\n- `**kwargs (Any)`: Keyword arguments for the function.\n\n**Returns:**  \n- `Any`: The result of the function execution.\n\n**Raises:**  \n- `ValueError`: If the CPU core specified is invalid.\n- `RuntimeError`: If there is an error executing the function on the CPU.\n\n**Example Usage:**\n\n```python\nresult = execute_on_cpu(0, sample_task, 10)\nprint(f\"Result: {result}\")\n```\n\n---\n\n### `retry_with_backoff(func: Callable, retries: int = RETRY_COUNT, delay: float = RETRY_DELAY, *args: Any, **kwargs: Any) -> Any`\n\n**Description:**  \nRetries a function with exponential backoff in case of failure.\n\n**Arguments:**  \n- `func (Callable)`: The function to execute with retries.\n- `retries (int)`: Number of retries. Defaults to `RETRY_COUNT`.\n- `delay (float)`: Delay between retries in seconds. Defaults to `RETRY_DELAY`.\n- `*args (Any)`: Positional arguments for the function.\n- `**kwargs (Any)`: Keyword arguments for the function.\n\n**Returns:**  \n- `Any`: The result of the function execution.\n\n**Raises:**  \n- `Exception`: After all retries fail.\n\n**Example Usage:**\n\n```python\nresult = retry_with_backoff(sample_task, retries=5, delay=2, n=10)\nprint(f\"Result after retries: {result}\")\n```\n\n---\n\n### `execute_with_cpu_cores(core_count: int, func: Callable, *args: Any, **kwargs: Any) -> Any`\n\n**Description:**  \nExecutes a function using a specified number of CPU cores.\n\n**Arguments:**  \n- `core_count (int)`: The number of CPU cores to run the function on.\n- `func (Callable)`: The function to be executed.\n- `*args (Any)`: Positional arguments for the function.\n- `**kwargs (Any)`: Keyword arguments for the function.\n\n**Returns:**  \n- `Any`: The result of the function execution.\n\n**Raises:**  \n- `ValueError`: If the number of CPU cores specified is invalid or exceeds available cores.\n- `RuntimeError`: If there is an error executing the function on the specified CPU cores.\n\n**Example Usage:**\n\n```python\nresult = execute_with_cpu_cores(4, sample_task, 10)\nprint(f\"Result: {result}\")\n```\n\n---\n\n### `list_available_gpus() -> List[str]`\n\n**Description:**  \nLists all available GPUs on the system.\n\n**Returns:**  \n- `List[str]`: A list of available GPU names.\n\n**Raises:**  \n- `RuntimeError`: If no GPUs are found.\n\n**Example Usage:**\n\n```python\ngpus = list_available_gpus()\nprint(f\"Available GPUs: {gpus}\")\n```\n\n---\n\n### `execute_on_gpu(gpu_id: int, func: Callable, *args: Any, **kwargs: Any) -> Any`\n\n**Description:**  \nExecutes a function on a specific GPU using Ray.\n\n**Arguments:**  \n- `gpu_id (int)`: The GPU to run the function on.\n- `func (Callable)`: The function to be executed.\n- `*args (Any)`: Positional arguments for the function.\n- `**kwargs (Any)`: Keyword arguments for the function.\n\n**Returns:**  \n- `Any`: The result of the function execution.\n\n**Raises:**  \n- `ValueError`: If the GPU index is invalid.\n- `RuntimeError`: If there is an error executing the function on the GPU.\n\n**Example Usage:**\n\n```python\nresult = execute_on_gpu(0, sample_task, 10)\nprint(f\"Result: {result}\")\n```\n\n---\n\n### `execute_on_multiple_gpus(gpu_ids: List[int], func: Callable, *args: Any, **kwargs: Any) -> List[Any]`\n\n**Description:**  \nExecutes a function across multiple GPUs using Ray.\n\n**Arguments:**  \n- `gpu_ids (List[int])`: The list of GPU IDs to run the function on.\n- `func (Callable)`: The function to be executed.\n- `*args (Any)`: Positional arguments for the function.\n- `**kwargs (Any)`: Keyword arguments for the function.\n\n**Returns:**  \n- `List[Any]`: A list of results from the execution on each GPU.\n\n**Raises:**  \n- `ValueError`: If any GPU index is invalid.\n- `RuntimeError`: If there is an error executing the function on the GPUs.\n\n**Example Usage:**\n\n```python\nresult = execute_on_multiple_gpus([0, 1], sample_task, 10)\nprint(f\"Results: {result}\")\n```\n\n---\n\n### `sample_task(n: int) -> int`\n\n**Description:**  \nA sample task function that returns the square of a number.\n\n**Arguments:**  \n- `n (int)`: Input number to be squared.\n\n**Returns:**  \n- `int`: The square of the input number.\n\n**Example Usage:**\n\n```python\nresult = sample_task(10)\nprint(f\"Square of 10: {result}\")\n```\n\n---\n\nThis documentation provides a clear description of the function's purpose, arguments, return values, potential exceptions, and examples of how to use them.\n\n\n---\n\n## Contributing\n\nWe welcome contributions to ClusterOps! If you'd like to contribute, please follow these steps:\n\n1. **Fork the repository** on GitHub.\n2. **Clone your fork** locally:\n   ```bash\n   git clone https://github.com/The-Swarm-Corporation/ClusterOps.git\n   cd clusterops\n   ```\n3. **Create a feature branch** for your changes:\n   ```bash\n   git checkout -b feature/new-feature\n   ```\n4. **Install the development dependencies**:\n   ```bash\n   pip install -r dev-requirements.txt\n   ```\n5. **Make your changes**, and be sure to include tests.\n6. **Run tests** to ensure everything works:\n   ```bash\n   pytest\n   ```\n7. **Commit your changes** and push them to GitHub:\n   ```bash\n   git commit -m \"Add new feature\"\n   git push origin feature/new-feature\n   ```\n8. **Submit a pull request** on GitHub, and we\u2019ll review it as soon as possible.\n\n### Reporting Issues\n\nIf you encounter any issues, please create a [GitHub issue](https://github.com/the-swarm-corporation/clusterops/issues).\n\n\n## Further Documentation\n\n[CLICK HERE](/DOCS.md)\n\n---\n\n## License\n\nClusterOps is licensed under the MIT License. See the [LICENSE](LICENSE) file for more details.\n\n---\n\n## Contact\n\nFor any questions, feedback, or contributions, please contact the **Swarms Team** at [kye@swarms.world](mailto:kye@swarms.world).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Paper - Pytorch",
    "version": "0.0.6",
    "project_urls": {
        "Documentation": "https://github.com/The-Swarm-Corporation/ClusterOps",
        "Homepage": "https://github.com/The-Swarm-Corporation/ClusterOps",
        "Repository": "https://github.com/The-Swarm-Corporation/ClusterOps"
    },
    "split_keywords": [
        "artificial intelligence",
        " deep learning",
        " optimizers",
        " prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "55443a8dcad2b47c754d0eae9b1dbbe08239845b8234bf78d812d37918d158af",
                "md5": "f664fabaae73c07fbf7d1a596dcf0902",
                "sha256": "6723232f65c41a87229c0b485ebd98824c54b971e6ec0926dea82062824f0177"
            },
            "downloads": -1,
            "filename": "clusterops-0.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f664fabaae73c07fbf7d1a596dcf0902",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 14657,
            "upload_time": "2024-10-31T05:02:30",
            "upload_time_iso_8601": "2024-10-31T05:02:30.729651Z",
            "url": "https://files.pythonhosted.org/packages/55/44/3a8dcad2b47c754d0eae9b1dbbe08239845b8234bf78d812d37918d158af/clusterops-0.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "560a0a96b345feeb663a80bacdd294335e7d795fbac42d90015f520417163cab",
                "md5": "d1d95a3b4547654cdea37c79f400b8c6",
                "sha256": "606c67b8d0398dde30920a9203c869a0ee39265b1c629146e8fd75946ad52395"
            },
            "downloads": -1,
            "filename": "clusterops-0.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "d1d95a3b4547654cdea37c79f400b8c6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 14411,
            "upload_time": "2024-10-31T05:02:32",
            "upload_time_iso_8601": "2024-10-31T05:02:32.327996Z",
            "url": "https://files.pythonhosted.org/packages/56/0a/0a96b345feeb663a80bacdd294335e7d795fbac42d90015f520417163cab/clusterops-0.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-31 05:02:32",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "The-Swarm-Corporation",
    "github_project": "ClusterOps",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "clusterops"
}
        
Elapsed time: 0.91620s