# clustree
## Status
**Functionality: Implemented**
* Directed graph representing clustree. Nodes are parsed images and node information is encoded by a border surrounding the image.
* Loading: Data provided directly or through a path to parent directory. Images provided through a path to parent directory.
* Appearance: Edge and node color can correspond to one of: #samples that pass through edge/node, cluster resolution `K`, or a fixed color. In the case of node color, a column name in the data and aggregate function can be used too. Use of column name and #samples creates a continuous colormap, whilst the other options result in discrete colors.
* Layout: Reingold-Tilford algorithm used for node positioning. Not recommended for kk > 12 due to memory bottleneck in igraph dependency.
* Legend: demonstration of node / edge color.
**Functionality: To Add**
* Legend: demonstration of transparency of edges.
* Layout: Bespoke implementation of Reingold-Tilford algorithm to overcome dependency's memory bottleneck.
## Usage
### Installation
Install the package with pip:
```
pip install clustree
```
### Quickstart
The powerhouse function of the library is `clustree`. Use
```
from clustree import clustree
```
to import the function. A detailed description of the parameters is provided below.
```
def clustree(
data: Union[Path, str],
prefix: str,
images: Union[Path, str],
output_path: Optional[Union[Path, str]] = None,
draw: bool = True,
node_color: str = "prefix",
node_color_aggr: Optional[Union[Callable, str]] = None,
node_cmap: Union[mpl.colors.Colormap, str] = "inferno",
edge_color: str = "samples",
edge_cmap: Union[mpl.colors.Colormap, str] = "viridis",
orientation: Literal["vertical", "horizontal"] = "vertical",
layout_reingold_tilford: bool = None,
min_cluster_number: Literal[0, 1] = 1,
border_size: float = 0.05,
figsize: tuple[float, float] = None,
arrows: bool = None,
node_size: float = 300,
node_size_edge: Optional[float] = None,
dpi: float = 500,
kk: Optional[int] = None,
) -> DiGraph:
"""
```
* `data` : Path of csv or DataFrame object.
* `prefix` : String indicating columns containing clustering information.
* `images` : Path of directory that contains images.
* `output_path` : Absolute path to save clustree drawing at. If file extension is supplied, must be .png. If None, then output not written to file.
* `draw` : Whether to draw the clustree. Defaults to True. If False and output_path supplied, will be overridden.
* `node_color` : For continuous colormap, use 'samples' or the name of a metadata column to color nodes by. For discrete colors, use 'prefix' to color by resolution or specify a fixed color (see Specifying colors in Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colors.html). If None, default set equal to value of prefix to color by resolution.
* `node_color_aggr` : If node_color is a column name then a function or string giving the name of a function to aggregate that column for samples in each cluster.
* `node_cmap` : If node_color is 'samples' or a column name then a colourmap to use (see Colormap Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colormaps.html).
* `edge_color` : For continuous colormap, use 'samples'. For discrete colors, use 'prefix' to color by resolution or specify a fixed color (see Specifying colors in Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colors.html). If None, default set to 'samples'.
* `edge_cmap` : If edge_color is 'samples' then a colourmap to use (see Colormap Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colormaps.html).
* `orientation` : Orientation of clustree drawing. Defaults to 'vertical'.
* `layout_reingold_tilford` : Whether to use the Reingold-Tilford algorithm for node positioning. Defaults to True if (kk <= 12), False otherwise. Setting True not recommended if (kk > 12) due to memory bottleneck in igraph dependency.
* `min_cluster_number` : Cluster number can take values (0, ..., K-1) or (1, ..., K). If the former option is preferred, parameter should take value 0, and 1 otherwise. Defaults to None, in which case, minimum cluster number is found automatically.
* `border_size` : Border width as proportion of image width. Defaults to 0.05.
* `figsize` : Parsed to matplotlib to determine figure size. Defaults to (kk/2, kk/2), clipped to a minimum of (3,3) and maximum of (10,10).
* `arrows` : Whether to add arrows to graph edges. Removing arrows alleviates appearance issue caused by arrows overlapping nodes. Defaults to True.
* `node_size` : Size of nodes in clustree graph drawing. Parsed directly to networkx.draw_networkx_nodes. Default to 300.
* `node_size_edge`: Controls edge start and end point. Parsed directly to networkx.draw_networkx_edges.
* `dpi` : Controls resolution of output if saved to file.
* `kk` : Choose custom depth of clustree graph.
## Glossary
* *cluster resolution*: Upper case `K`. For example, at cluster resolution `K=2` data is clustered into 2 distinct clusters.
* *cluster number*: Lower case `k`. For example, at cluster resolution 2 data is clustered into 2 distinct clusters `k=1` and `k=2`.
* *kk*: highest value of `K` (cluster resolution) shown in clustree.
* *cluster membership*: The association between data points and cluster numbers for fixed cluster resolution. For example, `[1, 1, 2, 2, 2]` would mean the first 2 data points belong to cluster number `1` and the following 3 data points belong to cluster number `2`.
Raw data
{
"_id": null,
"home_page": "https://github.com/ben-j-barlow/clustree",
"name": "clustree",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9,<4.0",
"maintainer_email": "",
"keywords": "clustering,visualization,visualisation,clustering-trees,cluster-trees",
"author": "Ben Barlow",
"author_email": "ben-j-barlow.1@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/40/32/7da6e2c5ad94915b09847984cb1c441a8b1284e50fde257e23a743617c42/clustree-0.2.1.tar.gz",
"platform": null,
"description": "# clustree\n\n## Status\n\n**Functionality: Implemented**\n\n* Directed graph representing clustree. Nodes are parsed images and node information is encoded by a border surrounding the image.\n* Loading: Data provided directly or through a path to parent directory. Images provided through a path to parent directory.\n* Appearance: Edge and node color can correspond to one of: #samples that pass through edge/node, cluster resolution `K`, or a fixed color. In the case of node color, a column name in the data and aggregate function can be used too. Use of column name and #samples creates a continuous colormap, whilst the other options result in discrete colors.\n* Layout: Reingold-Tilford algorithm used for node positioning. Not recommended for kk > 12 due to memory bottleneck in igraph dependency.\n* Legend: demonstration of node / edge color.\n\n\n**Functionality: To Add**\n\n* Legend: demonstration of transparency of edges.\n* Layout: Bespoke implementation of Reingold-Tilford algorithm to overcome dependency's memory bottleneck.\n\n## Usage\n\n### Installation\n\nInstall the package with pip:\n\n```\npip install clustree\n```\n\n### Quickstart\n\nThe powerhouse function of the library is `clustree`. Use\n\n```\nfrom clustree import clustree\n```\n\nto import the function. A detailed description of the parameters is provided below.\n\n```\ndef clustree(\n data: Union[Path, str],\n prefix: str,\n images: Union[Path, str],\n output_path: Optional[Union[Path, str]] = None,\n draw: bool = True,\n node_color: str = \"prefix\",\n node_color_aggr: Optional[Union[Callable, str]] = None,\n node_cmap: Union[mpl.colors.Colormap, str] = \"inferno\",\n edge_color: str = \"samples\",\n edge_cmap: Union[mpl.colors.Colormap, str] = \"viridis\",\n orientation: Literal[\"vertical\", \"horizontal\"] = \"vertical\",\n layout_reingold_tilford: bool = None,\n min_cluster_number: Literal[0, 1] = 1,\n border_size: float = 0.05,\n figsize: tuple[float, float] = None,\n arrows: bool = None,\n node_size: float = 300,\n node_size_edge: Optional[float] = None,\n dpi: float = 500,\n kk: Optional[int] = None,\n) -> DiGraph:\n \"\"\"\n\n```\n\n* `data` : Path of csv or DataFrame object.\n* `prefix` : String indicating columns containing clustering information.\n* `images` : Path of directory that contains images.\n* `output_path` : Absolute path to save clustree drawing at. If file extension is supplied, must be .png. If None, then output not written to file.\n* `draw` : Whether to draw the clustree. Defaults to True. If False and output_path supplied, will be overridden.\n* `node_color` : For continuous colormap, use 'samples' or the name of a metadata column to color nodes by. For discrete colors, use 'prefix' to color by resolution or specify a fixed color (see Specifying colors in Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colors.html). If None, default set equal to value of prefix to color by resolution.\n* `node_color_aggr` : If node_color is a column name then a function or string giving the name of a function to aggregate that column for samples in each cluster.\n* `node_cmap` : If node_color is 'samples' or a column name then a colourmap to use (see Colormap Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colormaps.html).\n* `edge_color` : For continuous colormap, use 'samples'. For discrete colors, use 'prefix' to color by resolution or specify a fixed color (see Specifying colors in Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colors.html). If None, default set to 'samples'.\n* `edge_cmap` : If edge_color is 'samples' then a colourmap to use (see Colormap Matplotlib tutorial here: https://matplotlib.org/stable/tutorials/colors/colormaps.html).\n* `orientation` : Orientation of clustree drawing. Defaults to 'vertical'.\n* `layout_reingold_tilford` : Whether to use the Reingold-Tilford algorithm for node positioning. Defaults to True if (kk <= 12), False otherwise. Setting True not recommended if (kk > 12) due to memory bottleneck in igraph dependency.\n* `min_cluster_number` : Cluster number can take values (0, ..., K-1) or (1, ..., K). If the former option is preferred, parameter should take value 0, and 1 otherwise. Defaults to None, in which case, minimum cluster number is found automatically.\n* `border_size` : Border width as proportion of image width. Defaults to 0.05.\n* `figsize` : Parsed to matplotlib to determine figure size. Defaults to (kk/2, kk/2), clipped to a minimum of (3,3) and maximum of (10,10).\n* `arrows` : Whether to add arrows to graph edges. Removing arrows alleviates appearance issue caused by arrows overlapping nodes. Defaults to True.\n* `node_size` : Size of nodes in clustree graph drawing. Parsed directly to networkx.draw_networkx_nodes. Default to 300.\n* `node_size_edge`: Controls edge start and end point. Parsed directly to networkx.draw_networkx_edges.\n* `dpi` : Controls resolution of output if saved to file.\n* `kk` : Choose custom depth of clustree graph.\n\n## Glossary\n\n* *cluster resolution*: Upper case `K`. For example, at cluster resolution `K=2` data is clustered into 2 distinct clusters.\n* *cluster number*: Lower case `k`. For example, at cluster resolution 2 data is clustered into 2 distinct clusters `k=1` and `k=2`.\n* *kk*: highest value of `K` (cluster resolution) shown in clustree.\n* *cluster membership*: The association between data points and cluster numbers for fixed cluster resolution. For example, `[1, 1, 2, 2, 2]` would mean the first 2 data points belong to cluster number `1` and the following 3 data points belong to cluster number `2`.",
"bugtrack_url": null,
"license": "GPL-3.0-or-later",
"summary": "Visualize relationship between clusterings at different resolutions",
"version": "0.2.1",
"project_urls": {
"Homepage": "https://github.com/ben-j-barlow/clustree",
"Repository": "https://github.com/ben-j-barlow/clustree"
},
"split_keywords": [
"clustering",
"visualization",
"visualisation",
"clustering-trees",
"cluster-trees"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4ef50f4c458c357ba2cfd245a5a9db58b12899a64a1afa236fa5b7e86cfc824a",
"md5": "363556ccc50cf33abb66beb6e7347a58",
"sha256": "0845225a41a008e6f26535546c3090e03055daaea865691122b56b00b69c0e26"
},
"downloads": -1,
"filename": "clustree-0.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "363556ccc50cf33abb66beb6e7347a58",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9,<4.0",
"size": 25475,
"upload_time": "2023-05-11T11:43:27",
"upload_time_iso_8601": "2023-05-11T11:43:27.307029Z",
"url": "https://files.pythonhosted.org/packages/4e/f5/0f4c458c357ba2cfd245a5a9db58b12899a64a1afa236fa5b7e86cfc824a/clustree-0.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "40327da6e2c5ad94915b09847984cb1c441a8b1284e50fde257e23a743617c42",
"md5": "c87374c4b7d562cf41373310c2b55016",
"sha256": "4d8d26279c65bc15ec11c3c1111ab6922eb32ed759aa3ac4d027328bfacfe346"
},
"downloads": -1,
"filename": "clustree-0.2.1.tar.gz",
"has_sig": false,
"md5_digest": "c87374c4b7d562cf41373310c2b55016",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9,<4.0",
"size": 24889,
"upload_time": "2023-05-11T11:43:29",
"upload_time_iso_8601": "2023-05-11T11:43:29.771475Z",
"url": "https://files.pythonhosted.org/packages/40/32/7da6e2c5ad94915b09847984cb1c441a8b1284e50fde257e23a743617c42/clustree-0.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-05-11 11:43:29",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ben-j-barlow",
"github_project": "clustree",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "clustree"
}