cmem-plugin-pgvector


Namecmem-plugin-pgvector JSON
Version 0.5.0 PyPI version JSON
download
home_pageNone
SummaryStore embedding vectors into a Postgres vector store.
upload_time2025-02-20 15:53:20
maintainerEdgard Marx
docs_urlNone
authoreccenca GmbH
requires_python<4.0,>=3.11
licenseApache-2.0
keywords eccenca corporate memory plugin
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # cmem-plugin-pgvector

[![poetry][poetry-shield]][poetry-link] [![ruff][ruff-shield]][ruff-link] [![mypy][mypy-shield]][mypy-link] [![copier][copier-shield]][copier] 

Store embedding vectors into a Postgres vector store.

This plugin consumes the costumable entity's paths ```embedding```, ```text``` and ```metadata``` as following:

  - The text path contain the text used to generate the embeddings, default ```text```.
  - The embedding path contain the embedding representation of the text, default ```embedding```.
  - The metadata path contain the information that will be associated with the embedding, default all paths.

[![eccenca Corporate Memory][cmem-shield]][cmem-link]

## Use

Interact with Large Language Models.

This is a plugin for [eccenca](https://eccenca.com) [Corporate Memory](https://documentation.eccenca.com).

You can install it with the [cmemc](https://eccenca.com/go/cmemc) command line
clients like this:

```
cmemc admin workspace python install cmem-plugin-llm
```

### Parameters

- ```collection_name```: The name of the collection where the embeddings are going to be stored, default ```my_collection```
- ```user```:the database user
- ```password```: the database password
- ```host```: the databse host, i.e. locahost
- ```port```: the database port, default ```5432```
- ```database```: the name of the database
- ```pre_delete_collection```: boolean parameter indicating if the collection should be cleanse before insertion, default ```false```
- ```embedding_path```: output path that will contain the generated embedding, default ```embedding```
- ```text_path```: path containing the text used for genereting the embedding, default ```text```
- ```metadata_paths```: paths from the entity that will be stored along with the embedding, default all paths

[cmem-link]: https://documentation.eccenca.com
[cmem-shield]: https://img.shields.io/endpoint?url=https://dev.documentation.eccenca.com/badge.json
[poetry-link]: https://python-poetry.org/
[poetry-shield]: https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json
[ruff-link]: https://docs.astral.sh/ruff/
[ruff-shield]: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json&label=Code%20Style
[mypy-link]: https://mypy-lang.org/
[mypy-shield]: https://www.mypy-lang.org/static/mypy_badge.svg
[copier]: https://copier.readthedocs.io/
[copier-shield]: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/copier-org/copier/master/img/badge/badge-grayscale-inverted-border-purple.json


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cmem-plugin-pgvector",
    "maintainer": "Edgard Marx",
    "docs_url": null,
    "requires_python": "<4.0,>=3.11",
    "maintainer_email": "edgard.marx@eccenca.com",
    "keywords": "eccenca Corporate Memory, plugin",
    "author": "eccenca GmbH",
    "author_email": "cmempy-developer@eccenca.com",
    "download_url": "https://files.pythonhosted.org/packages/77/61/49b9f6719b630ce4e20502bcc16ba05b36640150eedfc941d4436d86fd41/cmem_plugin_pgvector-0.5.0.tar.gz",
    "platform": null,
    "description": "# cmem-plugin-pgvector\n\n[![poetry][poetry-shield]][poetry-link] [![ruff][ruff-shield]][ruff-link] [![mypy][mypy-shield]][mypy-link] [![copier][copier-shield]][copier] \n\nStore embedding vectors into a Postgres vector store.\n\nThis plugin consumes the costumable entity's paths ```embedding```, ```text``` and ```metadata``` as following:\n\n  - The text path contain the text used to generate the embeddings, default ```text```.\n  - The embedding path contain the embedding representation of the text, default ```embedding```.\n  - The metadata path contain the information that will be associated with the embedding, default all paths.\n\n[![eccenca Corporate Memory][cmem-shield]][cmem-link]\n\n## Use\n\nInteract with Large Language Models.\n\nThis is a plugin for [eccenca](https://eccenca.com) [Corporate Memory](https://documentation.eccenca.com).\n\nYou can install it with the [cmemc](https://eccenca.com/go/cmemc) command line\nclients like this:\n\n```\ncmemc admin workspace python install cmem-plugin-llm\n```\n\n### Parameters\n\n- ```collection_name```: The name of the collection where the embeddings are going to be stored, default ```my_collection```\n- ```user```:the database user\n- ```password```: the database password\n- ```host```: the databse host, i.e. locahost\n- ```port```: the database port, default ```5432```\n- ```database```: the name of the database\n- ```pre_delete_collection```: boolean parameter indicating if the collection should be cleanse before insertion, default ```false```\n- ```embedding_path```: output path that will contain the generated embedding, default ```embedding```\n- ```text_path```: path containing the text used for genereting the embedding, default ```text```\n- ```metadata_paths```: paths from the entity that will be stored along with the embedding, default all paths\n\n[cmem-link]: https://documentation.eccenca.com\n[cmem-shield]: https://img.shields.io/endpoint?url=https://dev.documentation.eccenca.com/badge.json\n[poetry-link]: https://python-poetry.org/\n[poetry-shield]: https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json\n[ruff-link]: https://docs.astral.sh/ruff/\n[ruff-shield]: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json&label=Code%20Style\n[mypy-link]: https://mypy-lang.org/\n[mypy-shield]: https://www.mypy-lang.org/static/mypy_badge.svg\n[copier]: https://copier.readthedocs.io/\n[copier-shield]: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/copier-org/copier/master/img/badge/badge-grayscale-inverted-border-purple.json\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Store embedding vectors into a Postgres vector store.",
    "version": "0.5.0",
    "project_urls": null,
    "split_keywords": [
        "eccenca corporate memory",
        " plugin"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2e41c4df88774ce737be2350a002f78a6e33fbe0028c875f96f6e78c1c427f23",
                "md5": "3b0d40c9036dbc62a937c06fbbbfabc6",
                "sha256": "8d8c189a7f90074ff4baea19886d9a03e577fe82a4db2e45d5b0b1632d975603"
            },
            "downloads": -1,
            "filename": "cmem_plugin_pgvector-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3b0d40c9036dbc62a937c06fbbbfabc6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.11",
            "size": 13782,
            "upload_time": "2025-02-20T15:53:18",
            "upload_time_iso_8601": "2025-02-20T15:53:18.917598Z",
            "url": "https://files.pythonhosted.org/packages/2e/41/c4df88774ce737be2350a002f78a6e33fbe0028c875f96f6e78c1c427f23/cmem_plugin_pgvector-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "776149b9f6719b630ce4e20502bcc16ba05b36640150eedfc941d4436d86fd41",
                "md5": "4ecad23ec2606805418b03c1ca1801c2",
                "sha256": "76ba3dd28c2053327a0dbb8469ca36d970fd5eef6ed994807bc8b4f9bed82e48"
            },
            "downloads": -1,
            "filename": "cmem_plugin_pgvector-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "4ecad23ec2606805418b03c1ca1801c2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.11",
            "size": 13865,
            "upload_time": "2025-02-20T15:53:20",
            "upload_time_iso_8601": "2025-02-20T15:53:20.866747Z",
            "url": "https://files.pythonhosted.org/packages/77/61/49b9f6719b630ce4e20502bcc16ba05b36640150eedfc941d4436d86fd41/cmem_plugin_pgvector-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-20 15:53:20",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "cmem-plugin-pgvector"
}
        
Elapsed time: 1.18659s