cnhkmcp


Namecnhkmcp JSON
Version 1.0.5 PyPI version JSON
download
home_pageNone
SummaryA Model Context Protocol server for quantitative research and data analysis
upload_time2025-08-06 19:39:09
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords api data-analysis mcp model-context-protocol quantitative research
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # CNHK MCP Server

[![PyPI version](https://badge.fury.io/py/cnhkmcp.svg)](https://badge.fury.io/py/cnhkmcp)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

A Model Context Protocol (MCP) server for quantitative research and data analysis. This package provides comprehensive tools for research, simulation, and data analysis workflows.

## Features

### ๐Ÿ” Authentication & Session Management
- Secure authentication with platform API
- Automatic token refresh and session persistence
- Credential storage and management

### ๐Ÿš€ Research & Simulation
- **Single & Batch Simulations**: Submit individual models or batch process up to 10 models simultaneously
- **Smart Waiting**: Intelligent monitoring with automatic retry logic
- **Multi-Model Support**: Regular and advanced simulation strategies
- **Real-time Monitoring**: Track simulation progress and completion status

### ๐Ÿ“Š Data Analysis & Export
- **Performance Analytics**: Performance analysis, statistical metrics, analytical tools
- **Portfolio Analysis**: Aggregate data from multiple models
- **Data Export**: CSV export for performance data and statistics
- **Result Archival**: JSON export for complete simulation results

### ๐Ÿ” Research Tools
- **Data Discovery**: Explore available datasets, data fields, and operators
- **Validation Tools**: Correlation checks and analysis tools
- **Forum Integration**: Access community forum posts and discussions
- **Quality Assurance**: Comprehensive validation before submission

### ๐Ÿ“ˆ Advanced Features
- **Batch Processing**: Parallel processing of multiple models with configurable batch sizes
- **Data Transformation**: Flatten complex nested data structures for analysis
- **Link Generation**: Create clickable links to platform resources
- **Error Handling**: Comprehensive error tracking and reporting

## Installation

### From PyPI (Recommended)

```bash
pip install cnhkmcp
```

### From Source

```bash
git clone https://github.com/cnhk/cnhkmcp.git
cd cnhkmcp
pip install -e .
```

## Quick Start

### 1. Basic Setup

First, start the MCP server:

```bash
cnhkmcp-server
```

### 2. Authentication

```python
# The server will automatically handle authentication
# You can also configure credentials in config files
```

### 3. Basic Simulation

```python
# Example simulation request
{
  "tool": "create_simulation",
  "arguments": {
    "type": "REGULAR",
    "settings": {
      "instrumentType": "EQUITY",
      "region": "USA", 
      "universe": "TOP3000",
      "delay": 1,
      "decay": 0,
      "neutralization": "SUBUNIV",
      "truncation": 0.08,
      "testPeriod": "P1Y6M",
      "unitHandling": "VERIFY",
      "nanHandling": "ELIMINATE",
      "language": "FASTEXPR",
      "visualization": true
    },
    "regular": "close"
  }
}
```

## Configuration

### Credentials Configuration

Create a `config/cnhk-config.json` file:

```json
{
  "credentials": {
    "email": "your-email@example.com",
    "password": "your-password"
  },
  "defaults": {
    "instrumentType": "EQUITY",
    "region": "USA",
    "universe": "TOP3000",
    "delay": 1,
    "decay": 0,
    "neutralization": "SUBUNIV",
    "truncation": 0.08,
    "testPeriod": "P1Y6M",
    "unitHandling": "VERIFY",
    "nanHandling": "ELIMINATE",
    "language": "FASTEXPR",
    "visualization": true
  }
}
```

## Available Tools

### Core Research Tools

| Tool | Description | Use Case |
|------|-------------|----------|
| `authenticate` | ๐Ÿ” Authenticate with platform | Required first step |
| `create_simulation` | ๐Ÿš€ Submit expressions for simulation | Single model research |
| `create_multi_simulation` | ๐Ÿš€ Batch submit multiple models | Batch research |
| `wait_for_simulation` | โณ Smart simulation waiting | Monitor completion |
| `get_simulation_status` | โฑ๏ธ Check simulation progress | Status monitoring |

### Alpha Management

| Tool | Description | Use Case |
|------|-------------|----------|
| `get_alpha_details` | ๐Ÿ“Š Get alpha metadata and results | Result extraction |
| `get_user_alphas` | ๐Ÿ“‹ Retrieve user's alpha list | Portfolio management |
| `submit_alpha` | โœ… Submit alpha for evaluation | Production submission |
| `set_alpha_properties` | โš™๏ธ Update alpha properties | Alpha organization |

### Data Analysis

| Tool | Description | Use Case |
|------|-------------|----------|
| `get_alpha_pnl` | ๐Ÿ“ˆ Get PnL data | Performance analysis |
| `get_alpha_yearly_stats` | ๐Ÿ“Š Get yearly statistics | Annual performance |
| `combine_pnl_data` | ๐Ÿ“ˆ Aggregate PnL from multiple alphas | Portfolio analysis |
| `save_simulation_data` | ๐Ÿ’พ Export simulation results | Data archival |
| `save_pnl_data` | ๐Ÿ“ค Export PnL to CSV | External analysis |

### Validation & Quality

| Tool | Description | Use Case |
|------|-------------|----------|
| `check_production_correlation` | ๐Ÿ” Check production correlation | Pre-submission validation |
| `check_self_correlation` | ๐Ÿ” Check self-correlation | Uniqueness validation |
| `get_submission_check` | โœ… Comprehensive submission check | Quality assurance |
| `get_alpha_checks` | ๐Ÿงช Detailed validation results | Debug validation issues |

### Data Discovery

| Tool | Description | Use Case |
|------|-------------|----------|
| `get_datasets` | ๐Ÿ” List available datasets | Data exploration |
| `get_datafields` | ๐Ÿ“Š Get data fields | Field discovery |
| `get_operators` | โš™๏ธ Get available operators | Expression building |
| `get_instrument_options` | ๐Ÿ”ง Get configuration options | Setup assistance |

### Forum & Community

| Tool | Description | Use Case |
|------|-------------|----------|
| `get_forum_post` | ๐Ÿ“„ Extract forum post content | Community research |
| `search_forum_posts` | ๐Ÿ” Search forum discussions | Topic discovery |

## Usage Examples

### Example 1: Basic Alpha Research Workflow

```python
# 1. Authenticate
await authenticate({
    "email": "user@example.com",
    "password": "password"
})

# 2. Create simulation
simulation = await create_simulation({
    "type": "REGULAR",
    "settings": {
        "instrumentType": "EQUITY",
        "region": "USA",
        "universe": "TOP3000",
        "delay": 1,
        "decay": 0,
        "neutralization": "SUBUNIV", 
        "truncation": 0.08,
        "testPeriod": "P1Y6M",
        "unitHandling": "VERIFY",
        "nanHandling": "ELIMINATE",
        "language": "FASTEXPR",
        "visualization": True
    },
    "regular": "close"
})

# 3. Wait for completion
result = await wait_for_simulation({
    "simulationId": simulation["id"],
    "maxWaitTime": 1800
})

# 4. Get detailed results
details = await get_alpha_details({
    "alphaId": result["alpha_id"]
})
```

### Example 2: Batch Alpha Processing

```python
# Get user's alphas
alphas = await get_user_alphas({
    "stage": "IS",
    "limit": 50
})

# Extract alpha IDs
alpha_ids = [alpha["id"] for alpha in alphas["results"]]

# Batch process for correlations  
correlations = await batch_process_alphas({
    "alphaIds": alpha_ids,
    "operation": "get_correlations",
    "batchSize": 5
})
```

### Example 3: Multi-Simulation

```python
# Create multiple simulations
multi_sim = await create_multi_simulation({
    "simulations": [
        {
            "type": "REGULAR",
            "settings": {...},
            "regular": "close"
        },
        {
            "type": "REGULAR", 
            "settings": {...},
            "regular": "open"
        }
        # ... up to 10 total
    ]
})
```

### Example 4: Forum Research

```python
# Get forum post content
post = await get_forum_post({
    "postUrlOrId": "32995186681879-ๅธธ็”จๆจกๆฟๅˆ†ๆž",
    "includeComments": True
})

# Search forum posts
search_results = await search_forum_posts({
    "searchQuery": "ๆจกๆฟ",
    "maxResults": 20
})
```

## Advanced Features

### Batch Processing

Process multiple alphas efficiently:

```python
results = await batch_process_alphas({
    "alphaIds": ["alpha1", "alpha2", "alpha3"],
    "operation": "get_details",  # or "get_pnl", "get_stats", "get_correlations"
    "batchSize": 3
})
```

### Data Export

Export results for external analysis:

```python
# Save simulation data
save_result = await save_simulation_data({
    "simulationResult": simulation_data,
    "folderPath": "my_results"
})

# Export PnL data to CSV
csv_result = await save_pnl_data({
    "alphaId": "alpha123",
    "region": "USA",
    "pnlData": pnl_data,
    "folderPath": "pnl_exports"
})
```

### Data Analysis

Combine and analyze multiple alphas:

```python
# Combine PnL data from multiple alphas
combined = await combine_pnl_data({
    "results": [result1, result2, result3]
})

# Expand nested data structures
expanded = await expand_nested_data({
    "data": complex_data,
    "preserveOriginal": True
})
```

## Error Handling

The server provides comprehensive error handling:

- **Authentication Errors**: Automatic token refresh
- **Rate Limiting**: Built-in retry logic with exponential backoff
- **Network Errors**: Automatic reconnection and retry
- **Validation Errors**: Detailed error messages with suggestions

## Logging

Configure logging level in your environment:

```bash
export CNHK_MCP_LOG_LEVEL=INFO  # DEBUG, INFO, WARNING, ERROR
```

## Development

### Setting up Development Environment

```bash
git clone https://github.com/cnhk/cnhkmcp.git
cd cnhkmcp
pip install -e ".[dev]"
```

### Running Tests

```bash
pytest
```

### Code Formatting

```bash
black src/
isort src/
```

## Requirements

- Python 3.8+
- Platform account access
- Chrome/Chromium browser (for forum functionality)

## Dependencies

- `mcp>=1.0.0`: Model Context Protocol SDK
- `httpx>=0.25.0`: HTTP client
- `pydantic>=2.0.0`: Data validation
- `selenium>=4.0.0`: Web automation
- `beautifulsoup4>=4.12.0`: HTML parsing

## Contributing

1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Add tests
5. Submit a pull request

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Support

- ๐Ÿ“– [Documentation](https://github.com/cnhk/cnhkmcp/blob/main/README.md)
- ๐Ÿ› [Issue Tracker](https://github.com/cnhk/cnhkmcp/issues)
- ๐Ÿ’ฌ [Discussions](https://github.com/cnhk/cnhkmcp/discussions)

## Changelog

### v1.0.0
- Initial release
- Core MCP server functionality
- Alpha simulation and management
- Forum integration
- Data analysis tools
- Batch processing capabilities

---

**CNHK MCP Server** - Bringing quantitative research capabilities to AI assistants through the Model Context Protocol.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cnhkmcp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "CNHK MCP <support@example.com>",
    "keywords": "api, data-analysis, mcp, model-context-protocol, quantitative, research",
    "author": null,
    "author_email": "CNHK MCP <support@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/a2/90/3e15e68c36da4828c703682beddabf39edbea14ceab33c1cf6c652fe36eb/cnhkmcp-1.0.5.tar.gz",
    "platform": null,
    "description": "# CNHK MCP Server\n\n[![PyPI version](https://badge.fury.io/py/cnhkmcp.svg)](https://badge.fury.io/py/cnhkmcp)\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n\nA Model Context Protocol (MCP) server for quantitative research and data analysis. This package provides comprehensive tools for research, simulation, and data analysis workflows.\n\n## Features\n\n### \ud83d\udd10 Authentication & Session Management\n- Secure authentication with platform API\n- Automatic token refresh and session persistence\n- Credential storage and management\n\n### \ud83d\ude80 Research & Simulation\n- **Single & Batch Simulations**: Submit individual models or batch process up to 10 models simultaneously\n- **Smart Waiting**: Intelligent monitoring with automatic retry logic\n- **Multi-Model Support**: Regular and advanced simulation strategies\n- **Real-time Monitoring**: Track simulation progress and completion status\n\n### \ud83d\udcca Data Analysis & Export\n- **Performance Analytics**: Performance analysis, statistical metrics, analytical tools\n- **Portfolio Analysis**: Aggregate data from multiple models\n- **Data Export**: CSV export for performance data and statistics\n- **Result Archival**: JSON export for complete simulation results\n\n### \ud83d\udd0d Research Tools\n- **Data Discovery**: Explore available datasets, data fields, and operators\n- **Validation Tools**: Correlation checks and analysis tools\n- **Forum Integration**: Access community forum posts and discussions\n- **Quality Assurance**: Comprehensive validation before submission\n\n### \ud83d\udcc8 Advanced Features\n- **Batch Processing**: Parallel processing of multiple models with configurable batch sizes\n- **Data Transformation**: Flatten complex nested data structures for analysis\n- **Link Generation**: Create clickable links to platform resources\n- **Error Handling**: Comprehensive error tracking and reporting\n\n## Installation\n\n### From PyPI (Recommended)\n\n```bash\npip install cnhkmcp\n```\n\n### From Source\n\n```bash\ngit clone https://github.com/cnhk/cnhkmcp.git\ncd cnhkmcp\npip install -e .\n```\n\n## Quick Start\n\n### 1. Basic Setup\n\nFirst, start the MCP server:\n\n```bash\ncnhkmcp-server\n```\n\n### 2. Authentication\n\n```python\n# The server will automatically handle authentication\n# You can also configure credentials in config files\n```\n\n### 3. Basic Simulation\n\n```python\n# Example simulation request\n{\n  \"tool\": \"create_simulation\",\n  \"arguments\": {\n    \"type\": \"REGULAR\",\n    \"settings\": {\n      \"instrumentType\": \"EQUITY\",\n      \"region\": \"USA\", \n      \"universe\": \"TOP3000\",\n      \"delay\": 1,\n      \"decay\": 0,\n      \"neutralization\": \"SUBUNIV\",\n      \"truncation\": 0.08,\n      \"testPeriod\": \"P1Y6M\",\n      \"unitHandling\": \"VERIFY\",\n      \"nanHandling\": \"ELIMINATE\",\n      \"language\": \"FASTEXPR\",\n      \"visualization\": true\n    },\n    \"regular\": \"close\"\n  }\n}\n```\n\n## Configuration\n\n### Credentials Configuration\n\nCreate a `config/cnhk-config.json` file:\n\n```json\n{\n  \"credentials\": {\n    \"email\": \"your-email@example.com\",\n    \"password\": \"your-password\"\n  },\n  \"defaults\": {\n    \"instrumentType\": \"EQUITY\",\n    \"region\": \"USA\",\n    \"universe\": \"TOP3000\",\n    \"delay\": 1,\n    \"decay\": 0,\n    \"neutralization\": \"SUBUNIV\",\n    \"truncation\": 0.08,\n    \"testPeriod\": \"P1Y6M\",\n    \"unitHandling\": \"VERIFY\",\n    \"nanHandling\": \"ELIMINATE\",\n    \"language\": \"FASTEXPR\",\n    \"visualization\": true\n  }\n}\n```\n\n## Available Tools\n\n### Core Research Tools\n\n| Tool | Description | Use Case |\n|------|-------------|----------|\n| `authenticate` | \ud83d\udd10 Authenticate with platform | Required first step |\n| `create_simulation` | \ud83d\ude80 Submit expressions for simulation | Single model research |\n| `create_multi_simulation` | \ud83d\ude80 Batch submit multiple models | Batch research |\n| `wait_for_simulation` | \u23f3 Smart simulation waiting | Monitor completion |\n| `get_simulation_status` | \u23f1\ufe0f Check simulation progress | Status monitoring |\n\n### Alpha Management\n\n| Tool | Description | Use Case |\n|------|-------------|----------|\n| `get_alpha_details` | \ud83d\udcca Get alpha metadata and results | Result extraction |\n| `get_user_alphas` | \ud83d\udccb Retrieve user's alpha list | Portfolio management |\n| `submit_alpha` | \u2705 Submit alpha for evaluation | Production submission |\n| `set_alpha_properties` | \u2699\ufe0f Update alpha properties | Alpha organization |\n\n### Data Analysis\n\n| Tool | Description | Use Case |\n|------|-------------|----------|\n| `get_alpha_pnl` | \ud83d\udcc8 Get PnL data | Performance analysis |\n| `get_alpha_yearly_stats` | \ud83d\udcca Get yearly statistics | Annual performance |\n| `combine_pnl_data` | \ud83d\udcc8 Aggregate PnL from multiple alphas | Portfolio analysis |\n| `save_simulation_data` | \ud83d\udcbe Export simulation results | Data archival |\n| `save_pnl_data` | \ud83d\udce4 Export PnL to CSV | External analysis |\n\n### Validation & Quality\n\n| Tool | Description | Use Case |\n|------|-------------|----------|\n| `check_production_correlation` | \ud83d\udd0d Check production correlation | Pre-submission validation |\n| `check_self_correlation` | \ud83d\udd0d Check self-correlation | Uniqueness validation |\n| `get_submission_check` | \u2705 Comprehensive submission check | Quality assurance |\n| `get_alpha_checks` | \ud83e\uddea Detailed validation results | Debug validation issues |\n\n### Data Discovery\n\n| Tool | Description | Use Case |\n|------|-------------|----------|\n| `get_datasets` | \ud83d\udd0d List available datasets | Data exploration |\n| `get_datafields` | \ud83d\udcca Get data fields | Field discovery |\n| `get_operators` | \u2699\ufe0f Get available operators | Expression building |\n| `get_instrument_options` | \ud83d\udd27 Get configuration options | Setup assistance |\n\n### Forum & Community\n\n| Tool | Description | Use Case |\n|------|-------------|----------|\n| `get_forum_post` | \ud83d\udcc4 Extract forum post content | Community research |\n| `search_forum_posts` | \ud83d\udd0d Search forum discussions | Topic discovery |\n\n## Usage Examples\n\n### Example 1: Basic Alpha Research Workflow\n\n```python\n# 1. Authenticate\nawait authenticate({\n    \"email\": \"user@example.com\",\n    \"password\": \"password\"\n})\n\n# 2. Create simulation\nsimulation = await create_simulation({\n    \"type\": \"REGULAR\",\n    \"settings\": {\n        \"instrumentType\": \"EQUITY\",\n        \"region\": \"USA\",\n        \"universe\": \"TOP3000\",\n        \"delay\": 1,\n        \"decay\": 0,\n        \"neutralization\": \"SUBUNIV\", \n        \"truncation\": 0.08,\n        \"testPeriod\": \"P1Y6M\",\n        \"unitHandling\": \"VERIFY\",\n        \"nanHandling\": \"ELIMINATE\",\n        \"language\": \"FASTEXPR\",\n        \"visualization\": True\n    },\n    \"regular\": \"close\"\n})\n\n# 3. Wait for completion\nresult = await wait_for_simulation({\n    \"simulationId\": simulation[\"id\"],\n    \"maxWaitTime\": 1800\n})\n\n# 4. Get detailed results\ndetails = await get_alpha_details({\n    \"alphaId\": result[\"alpha_id\"]\n})\n```\n\n### Example 2: Batch Alpha Processing\n\n```python\n# Get user's alphas\nalphas = await get_user_alphas({\n    \"stage\": \"IS\",\n    \"limit\": 50\n})\n\n# Extract alpha IDs\nalpha_ids = [alpha[\"id\"] for alpha in alphas[\"results\"]]\n\n# Batch process for correlations  \ncorrelations = await batch_process_alphas({\n    \"alphaIds\": alpha_ids,\n    \"operation\": \"get_correlations\",\n    \"batchSize\": 5\n})\n```\n\n### Example 3: Multi-Simulation\n\n```python\n# Create multiple simulations\nmulti_sim = await create_multi_simulation({\n    \"simulations\": [\n        {\n            \"type\": \"REGULAR\",\n            \"settings\": {...},\n            \"regular\": \"close\"\n        },\n        {\n            \"type\": \"REGULAR\", \n            \"settings\": {...},\n            \"regular\": \"open\"\n        }\n        # ... up to 10 total\n    ]\n})\n```\n\n### Example 4: Forum Research\n\n```python\n# Get forum post content\npost = await get_forum_post({\n    \"postUrlOrId\": \"32995186681879-\u5e38\u7528\u6a21\u677f\u5206\u6790\",\n    \"includeComments\": True\n})\n\n# Search forum posts\nsearch_results = await search_forum_posts({\n    \"searchQuery\": \"\u6a21\u677f\",\n    \"maxResults\": 20\n})\n```\n\n## Advanced Features\n\n### Batch Processing\n\nProcess multiple alphas efficiently:\n\n```python\nresults = await batch_process_alphas({\n    \"alphaIds\": [\"alpha1\", \"alpha2\", \"alpha3\"],\n    \"operation\": \"get_details\",  # or \"get_pnl\", \"get_stats\", \"get_correlations\"\n    \"batchSize\": 3\n})\n```\n\n### Data Export\n\nExport results for external analysis:\n\n```python\n# Save simulation data\nsave_result = await save_simulation_data({\n    \"simulationResult\": simulation_data,\n    \"folderPath\": \"my_results\"\n})\n\n# Export PnL data to CSV\ncsv_result = await save_pnl_data({\n    \"alphaId\": \"alpha123\",\n    \"region\": \"USA\",\n    \"pnlData\": pnl_data,\n    \"folderPath\": \"pnl_exports\"\n})\n```\n\n### Data Analysis\n\nCombine and analyze multiple alphas:\n\n```python\n# Combine PnL data from multiple alphas\ncombined = await combine_pnl_data({\n    \"results\": [result1, result2, result3]\n})\n\n# Expand nested data structures\nexpanded = await expand_nested_data({\n    \"data\": complex_data,\n    \"preserveOriginal\": True\n})\n```\n\n## Error Handling\n\nThe server provides comprehensive error handling:\n\n- **Authentication Errors**: Automatic token refresh\n- **Rate Limiting**: Built-in retry logic with exponential backoff\n- **Network Errors**: Automatic reconnection and retry\n- **Validation Errors**: Detailed error messages with suggestions\n\n## Logging\n\nConfigure logging level in your environment:\n\n```bash\nexport CNHK_MCP_LOG_LEVEL=INFO  # DEBUG, INFO, WARNING, ERROR\n```\n\n## Development\n\n### Setting up Development Environment\n\n```bash\ngit clone https://github.com/cnhk/cnhkmcp.git\ncd cnhkmcp\npip install -e \".[dev]\"\n```\n\n### Running Tests\n\n```bash\npytest\n```\n\n### Code Formatting\n\n```bash\nblack src/\nisort src/\n```\n\n## Requirements\n\n- Python 3.8+\n- Platform account access\n- Chrome/Chromium browser (for forum functionality)\n\n## Dependencies\n\n- `mcp>=1.0.0`: Model Context Protocol SDK\n- `httpx>=0.25.0`: HTTP client\n- `pydantic>=2.0.0`: Data validation\n- `selenium>=4.0.0`: Web automation\n- `beautifulsoup4>=4.12.0`: HTML parsing\n\n## Contributing\n\n1. Fork the repository\n2. Create a feature branch\n3. Make your changes\n4. Add tests\n5. Submit a pull request\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## Support\n\n- \ud83d\udcd6 [Documentation](https://github.com/cnhk/cnhkmcp/blob/main/README.md)\n- \ud83d\udc1b [Issue Tracker](https://github.com/cnhk/cnhkmcp/issues)\n- \ud83d\udcac [Discussions](https://github.com/cnhk/cnhkmcp/discussions)\n\n## Changelog\n\n### v1.0.0\n- Initial release\n- Core MCP server functionality\n- Alpha simulation and management\n- Forum integration\n- Data analysis tools\n- Batch processing capabilities\n\n---\n\n**CNHK MCP Server** - Bringing quantitative research capabilities to AI assistants through the Model Context Protocol.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Model Context Protocol server for quantitative research and data analysis",
    "version": "1.0.5",
    "project_urls": {
        "Bug Tracker": "https://github.com/cnhk/cnhkmcp/issues",
        "Documentation": "https://github.com/cnhk/cnhkmcp/blob/main/README.md",
        "Homepage": "https://github.com/cnhk/cnhkmcp",
        "Repository": "https://github.com/cnhk/cnhkmcp"
    },
    "split_keywords": [
        "api",
        " data-analysis",
        " mcp",
        " model-context-protocol",
        " quantitative",
        " research"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b6f9c0bfaea72c6c1c7e6a4b4908c6a6d57f57b2dce61b5f6357b7bc07a8a5ae",
                "md5": "e00748319a8b2aa7956c06a17085fb1d",
                "sha256": "ae0afc44b78281d6bcfe2c55d6a8def76698ca2da5dacbad08dc6c689439075d"
            },
            "downloads": -1,
            "filename": "cnhkmcp-1.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e00748319a8b2aa7956c06a17085fb1d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 19642,
            "upload_time": "2025-08-06T19:39:08",
            "upload_time_iso_8601": "2025-08-06T19:39:08.006244Z",
            "url": "https://files.pythonhosted.org/packages/b6/f9/c0bfaea72c6c1c7e6a4b4908c6a6d57f57b2dce61b5f6357b7bc07a8a5ae/cnhkmcp-1.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a2903e15e68c36da4828c703682beddabf39edbea14ceab33c1cf6c652fe36eb",
                "md5": "233f4b3697b2c77c78900210bb50071c",
                "sha256": "ab8213d2c6264754cf8487af9ad3b6a99a7b30dcc2c119eb1fc804998eb4a0a7"
            },
            "downloads": -1,
            "filename": "cnhkmcp-1.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "233f4b3697b2c77c78900210bb50071c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 17960,
            "upload_time": "2025-08-06T19:39:09",
            "upload_time_iso_8601": "2025-08-06T19:39:09.305624Z",
            "url": "https://files.pythonhosted.org/packages/a2/90/3e15e68c36da4828c703682beddabf39edbea14ceab33c1cf6c652fe36eb/cnhkmcp-1.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-06 19:39:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cnhk",
    "github_project": "cnhkmcp",
    "github_not_found": true,
    "lcname": "cnhkmcp"
}
        
Elapsed time: 0.63995s