cocoindex


Namecocoindex JSON
Version 0.2.23 PyPI version JSON
download
home_pageNone
SummaryWith CocoIndex, users declare the transformation, CocoIndex creates & maintains an index, and keeps the derived index up to date based on source update, with minimal computation and changes.
upload_time2025-10-28 06:29:57
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseNone
keywords indexing real-time incremental pipeline search ai etl rag dataflow context-engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
    <img src="https://cocoindex.io/images/github.svg" alt="CocoIndex">
</p>

<h1 align="center">Data transformation for AI</h1>

<div align="center">

[![GitHub](https://img.shields.io/github/stars/cocoindex-io/cocoindex?color=5B5BD6)](https://github.com/cocoindex-io/cocoindex)
[![Documentation](https://img.shields.io/badge/Documentation-394e79?logo=readthedocs&logoColor=00B9FF)](https://cocoindex.io/docs/getting_started/quickstart)
[![License](https://img.shields.io/badge/license-Apache%202.0-5B5BD6?logoColor=white)](https://opensource.org/licenses/Apache-2.0)
[![PyPI version](https://img.shields.io/pypi/v/cocoindex?color=5B5BD6)](https://pypi.org/project/cocoindex/)
<!--[![PyPI - Downloads](https://img.shields.io/pypi/dm/cocoindex)](https://pypistats.org/packages/cocoindex) -->
[![PyPI Downloads](https://static.pepy.tech/badge/cocoindex/month)](https://pepy.tech/projects/cocoindex)
[![CI](https://github.com/cocoindex-io/cocoindex/actions/workflows/CI.yml/badge.svg?event=push&color=5B5BD6)](https://github.com/cocoindex-io/cocoindex/actions/workflows/CI.yml)
[![release](https://github.com/cocoindex-io/cocoindex/actions/workflows/release.yml/badge.svg?event=push&color=5B5BD6)](https://github.com/cocoindex-io/cocoindex/actions/workflows/release.yml)
[![Discord](https://img.shields.io/discord/1314801574169673738?logo=discord&color=5B5BD6&logoColor=white)](https://discord.com/invite/zpA9S2DR7s)

</div>

<div align="center">
    <a href="https://trendshift.io/repositories/13939" target="_blank"><img src="https://trendshift.io/api/badge/repositories/13939" alt="cocoindex-io%2Fcocoindex | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>

Ultra performant data transformation framework for AI, with core engine written in Rust. Support incremental processing and data lineage out-of-box.  Exceptional developer velocity. Production-ready at day 0.

⭐ Drop a star to help us grow!

<div align="center">

<!-- Keep these links. Translations will automatically update with the README. -->
[Deutsch](https://readme-i18n.com/cocoindex-io/cocoindex?lang=de) |
[English](https://readme-i18n.com/cocoindex-io/cocoindex?lang=en) |
[Español](https://readme-i18n.com/cocoindex-io/cocoindex?lang=es) |
[français](https://readme-i18n.com/cocoindex-io/cocoindex?lang=fr) |
[日本語](https://readme-i18n.com/cocoindex-io/cocoindex?lang=ja) |
[한국어](https://readme-i18n.com/cocoindex-io/cocoindex?lang=ko) |
[Português](https://readme-i18n.com/cocoindex-io/cocoindex?lang=pt) |
[Русский](https://readme-i18n.com/cocoindex-io/cocoindex?lang=ru) |
[中文](https://readme-i18n.com/cocoindex-io/cocoindex?lang=zh)

</div>

</br>

<p align="center">
    <img src="https://cocoindex.io/images/transformation.svg" alt="CocoIndex Transformation">
</p>

</br>

CocoIndex makes it effortless to transform data with AI, and keep source data and target in sync. Whether you’re building a vector index for RAG, creating knowledge graphs, or performing any custom data transformations — goes beyond SQL.

</br>

<p align="center">
<img alt="CocoIndex Features" src="https://cocoindex.io/images/venn2.svg" />
</p>

</br>

## Exceptional velocity

Just declare transformation in dataflow with ~100 lines of python

```python
# import
data['content'] = flow_builder.add_source(...)

# transform
data['out'] = data['content']
    .transform(...)
    .transform(...)

# collect data
collector.collect(...)

# export to db, vector db, graph db ...
collector.export(...)
```

CocoIndex follows the idea of [Dataflow](https://en.wikipedia.org/wiki/Dataflow_programming) programming model. Each transformation creates a new field solely based on input fields, without hidden states and value mutation. All data before/after each transformation is observable, with lineage out of the box.

**Particularly**, developers don't explicitly mutate data by creating, updating and deleting. They just need to define transformation/formula for a set of source data.

## Plug-and-Play Building Blocks

Native builtins for different source, targets and transformations. Standardize interface, make it 1-line code switch between different components - as easy as assembling building blocks.

<p align="center">
    <img src="https://cocoindex.io/images/components.svg" alt="CocoIndex Features">
</p>

## Data Freshness

CocoIndex keep source data and target in sync effortlessly.

<p align="center">
    <img src="https://github.com/user-attachments/assets/f4eb29b3-84ee-4fa0-a1e2-80eedeeabde6" alt="Incremental Processing" width="700">
</p>

It has out-of-box support for incremental indexing:

- minimal recomputation on source or logic change.
- (re-)processing necessary portions; reuse cache when possible

## Quick Start

If you're new to CocoIndex, we recommend checking out

- 📖 [Documentation](https://cocoindex.io/docs)
- ⚡  [Quick Start Guide](https://cocoindex.io/docs/getting_started/quickstart)
- 🎬 [Quick Start Video Tutorial](https://youtu.be/gv5R8nOXsWU?si=9ioeKYkMEnYevTXT)

### Setup

1. Install CocoIndex Python library

```bash
pip install -U cocoindex
```

2. [Install Postgres](https://cocoindex.io/docs/getting_started/installation#-install-postgres) if you don't have one. CocoIndex uses it for incremental processing.

3. (Optional) Install Claude Code skill for enhanced development experience. Run these commands in [Claude Code](https://claude.com/claude-code):

```
/plugin marketplace add cocoindex-io/cocoindex-claude
/plugin install cocoindex-skills@cocoindex
```

## Define data flow

Follow [Quick Start Guide](https://cocoindex.io/docs/getting_started/quickstart) to define your first indexing flow. An example flow looks like:

```python
@cocoindex.flow_def(name="TextEmbedding")
def text_embedding_flow(flow_builder: cocoindex.FlowBuilder, data_scope: cocoindex.DataScope):
    # Add a data source to read files from a directory
    data_scope["documents"] = flow_builder.add_source(cocoindex.sources.LocalFile(path="markdown_files"))

    # Add a collector for data to be exported to the vector index
    doc_embeddings = data_scope.add_collector()

    # Transform data of each document
    with data_scope["documents"].row() as doc:
        # Split the document into chunks, put into `chunks` field
        doc["chunks"] = doc["content"].transform(
            cocoindex.functions.SplitRecursively(),
            language="markdown", chunk_size=2000, chunk_overlap=500)

        # Transform data of each chunk
        with doc["chunks"].row() as chunk:
            # Embed the chunk, put into `embedding` field
            chunk["embedding"] = chunk["text"].transform(
                cocoindex.functions.SentenceTransformerEmbed(
                    model="sentence-transformers/all-MiniLM-L6-v2"))

            # Collect the chunk into the collector.
            doc_embeddings.collect(filename=doc["filename"], location=chunk["location"],
                                   text=chunk["text"], embedding=chunk["embedding"])

    # Export collected data to a vector index.
    doc_embeddings.export(
        "doc_embeddings",
        cocoindex.targets.Postgres(),
        primary_key_fields=["filename", "location"],
        vector_indexes=[
            cocoindex.VectorIndexDef(
                field_name="embedding",
                metric=cocoindex.VectorSimilarityMetric.COSINE_SIMILARITY)])
```

It defines an index flow like this:

<p align="center">
    <img width="400" alt="Data Flow" src="https://github.com/user-attachments/assets/2ea7be6d-3d94-42b1-b2bd-22515577e463" />
</p>

## 🚀 Examples and demo

| Example | Description |
|---------|-------------|
| [Text Embedding](examples/text_embedding) | Index text documents with embeddings for semantic search |
| [Code Embedding](examples/code_embedding) | Index code embeddings for semantic search |
| [PDF Embedding](examples/pdf_embedding) | Parse PDF and index text embeddings for semantic search |
| [PDF Elements Embedding](examples/pdf_elements_embedding) | Extract text and images from PDFs; embed text with SentenceTransformers and images with CLIP; store in Qdrant for multimodal search |
| [Manuals LLM Extraction](examples/manuals_llm_extraction) | Extract structured information from a manual using LLM |
| [Amazon S3 Embedding](examples/amazon_s3_embedding) | Index text documents from Amazon S3 |
| [Azure Blob Storage Embedding](examples/azure_blob_embedding) | Index text documents from Azure Blob Storage |
| [Google Drive Text Embedding](examples/gdrive_text_embedding) | Index text documents from Google Drive |
| [Docs to Knowledge Graph](examples/docs_to_knowledge_graph) | Extract relationships from Markdown documents and build a knowledge graph |
| [Embeddings to Qdrant](examples/text_embedding_qdrant) | Index documents in a Qdrant collection for semantic search |
| [Embeddings to LanceDB](examples/text_embedding_lancedb) | Index documents in a LanceDB collection for semantic search |
| [FastAPI Server with Docker](examples/fastapi_server_docker) | Run the semantic search server in a Dockerized FastAPI setup |
| [Product Recommendation](examples/product_recommendation) | Build real-time product recommendations with LLM and graph database|
| [Image Search with Vision API](examples/image_search) | Generates detailed captions for images using a vision model, embeds them, enables live-updating semantic search via FastAPI and served on a React frontend|
| [Face Recognition](examples/face_recognition) | Recognize faces in images and build embedding index |
| [Paper Metadata](examples/paper_metadata) | Index papers in PDF files, and build metadata tables for each paper |
| [Multi Format Indexing](examples/multi_format_indexing) | Build visual document index from PDFs and images with ColPali for semantic search |
| [Custom Source HackerNews](examples/custom_source_hn) | Index HackerNews threads and comments, using *CocoIndex Custom Source* |
| [Custom Output Files](examples/custom_output_files) | Convert markdown files to HTML files and save them to a local directory, using *CocoIndex Custom Targets* |
| [Patient intake form extraction](examples/patient_intake_extraction) | Use LLM to extract structured data from patient intake forms with different formats |
| [HackerNews Trending Topics](examples/hn_trending_topics) | Extract trending topics from HackerNews threads and comments, using *CocoIndex Custom Source* and LLM |

More coming and stay tuned 👀!

## 📖 Documentation

For detailed documentation, visit [CocoIndex Documentation](https://cocoindex.io/docs), including a [Quickstart guide](https://cocoindex.io/docs/getting_started/quickstart).

## 🤝 Contributing

We love contributions from our community ❤️. For details on contributing or running the project for development, check out our [contributing guide](https://cocoindex.io/docs/about/contributing).

## 👥 Community

Welcome with a huge coconut hug 🥥⋆。˚🤗. We are super excited for community contributions of all kinds - whether it's code improvements, documentation updates, issue reports, feature requests, and discussions in our Discord.

Join our community here:

- 🌟 [Star us on GitHub](https://github.com/cocoindex-io/cocoindex)
- 👋 [Join our Discord community](https://discord.com/invite/zpA9S2DR7s)
- ▶️ [Subscribe to our YouTube channel](https://www.youtube.com/@cocoindex-io)
- 📜 [Read our blog posts](https://cocoindex.io/blogs/)

## Support us

We are constantly improving, and more features and examples are coming soon. If you love this project, please drop us a star ⭐ at GitHub repo [![GitHub](https://img.shields.io/github/stars/cocoindex-io/cocoindex?color=5B5BD6)](https://github.com/cocoindex-io/cocoindex) to stay tuned and help us grow.

## License

CocoIndex is Apache 2.0 licensed.


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cocoindex",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "indexing, real-time, incremental, pipeline, search, ai, etl, rag, dataflow, context-engineering",
    "author": null,
    "author_email": "CocoIndex <cocoindex.io@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/1a/93/d0ae36df4f241c05dcfa9183ac6bd29690acaf0c8b9ddf3daae85c029b9e/cocoindex-0.2.23.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n    <img src=\"https://cocoindex.io/images/github.svg\" alt=\"CocoIndex\">\n</p>\n\n<h1 align=\"center\">Data transformation for AI</h1>\n\n<div align=\"center\">\n\n[![GitHub](https://img.shields.io/github/stars/cocoindex-io/cocoindex?color=5B5BD6)](https://github.com/cocoindex-io/cocoindex)\n[![Documentation](https://img.shields.io/badge/Documentation-394e79?logo=readthedocs&logoColor=00B9FF)](https://cocoindex.io/docs/getting_started/quickstart)\n[![License](https://img.shields.io/badge/license-Apache%202.0-5B5BD6?logoColor=white)](https://opensource.org/licenses/Apache-2.0)\n[![PyPI version](https://img.shields.io/pypi/v/cocoindex?color=5B5BD6)](https://pypi.org/project/cocoindex/)\n<!--[![PyPI - Downloads](https://img.shields.io/pypi/dm/cocoindex)](https://pypistats.org/packages/cocoindex) -->\n[![PyPI Downloads](https://static.pepy.tech/badge/cocoindex/month)](https://pepy.tech/projects/cocoindex)\n[![CI](https://github.com/cocoindex-io/cocoindex/actions/workflows/CI.yml/badge.svg?event=push&color=5B5BD6)](https://github.com/cocoindex-io/cocoindex/actions/workflows/CI.yml)\n[![release](https://github.com/cocoindex-io/cocoindex/actions/workflows/release.yml/badge.svg?event=push&color=5B5BD6)](https://github.com/cocoindex-io/cocoindex/actions/workflows/release.yml)\n[![Discord](https://img.shields.io/discord/1314801574169673738?logo=discord&color=5B5BD6&logoColor=white)](https://discord.com/invite/zpA9S2DR7s)\n\n</div>\n\n<div align=\"center\">\n    <a href=\"https://trendshift.io/repositories/13939\" target=\"_blank\"><img src=\"https://trendshift.io/api/badge/repositories/13939\" alt=\"cocoindex-io%2Fcocoindex | Trendshift\" style=\"width: 250px; height: 55px;\" width=\"250\" height=\"55\"/></a>\n</div>\n\nUltra performant data transformation framework for AI, with core engine written in Rust. Support incremental processing and data lineage out-of-box.  Exceptional developer velocity. Production-ready at day 0.\n\n\u2b50 Drop a star to help us grow!\n\n<div align=\"center\">\n\n<!-- Keep these links. Translations will automatically update with the README. -->\n[Deutsch](https://readme-i18n.com/cocoindex-io/cocoindex?lang=de) |\n[English](https://readme-i18n.com/cocoindex-io/cocoindex?lang=en) |\n[Espa\u00f1ol](https://readme-i18n.com/cocoindex-io/cocoindex?lang=es) |\n[fran\u00e7ais](https://readme-i18n.com/cocoindex-io/cocoindex?lang=fr) |\n[\u65e5\u672c\u8a9e](https://readme-i18n.com/cocoindex-io/cocoindex?lang=ja) |\n[\ud55c\uad6d\uc5b4](https://readme-i18n.com/cocoindex-io/cocoindex?lang=ko) |\n[Portugu\u00eas](https://readme-i18n.com/cocoindex-io/cocoindex?lang=pt) |\n[\u0420\u0443\u0441\u0441\u043a\u0438\u0439](https://readme-i18n.com/cocoindex-io/cocoindex?lang=ru) |\n[\u4e2d\u6587](https://readme-i18n.com/cocoindex-io/cocoindex?lang=zh)\n\n</div>\n\n</br>\n\n<p align=\"center\">\n    <img src=\"https://cocoindex.io/images/transformation.svg\" alt=\"CocoIndex Transformation\">\n</p>\n\n</br>\n\nCocoIndex makes it effortless to transform data with AI, and keep source data and target in sync. Whether you\u2019re building a vector index for RAG, creating knowledge graphs, or performing any custom data transformations \u2014 goes beyond SQL.\n\n</br>\n\n<p align=\"center\">\n<img alt=\"CocoIndex Features\" src=\"https://cocoindex.io/images/venn2.svg\" />\n</p>\n\n</br>\n\n## Exceptional velocity\n\nJust declare transformation in dataflow with ~100 lines of python\n\n```python\n# import\ndata['content'] = flow_builder.add_source(...)\n\n# transform\ndata['out'] = data['content']\n    .transform(...)\n    .transform(...)\n\n# collect data\ncollector.collect(...)\n\n# export to db, vector db, graph db ...\ncollector.export(...)\n```\n\nCocoIndex follows the idea of [Dataflow](https://en.wikipedia.org/wiki/Dataflow_programming) programming model. Each transformation creates a new field solely based on input fields, without hidden states and value mutation. All data before/after each transformation is observable, with lineage out of the box.\n\n**Particularly**, developers don't explicitly mutate data by creating, updating and deleting. They just need to define transformation/formula for a set of source data.\n\n## Plug-and-Play Building Blocks\n\nNative builtins for different source, targets and transformations. Standardize interface, make it 1-line code switch between different components - as easy as assembling building blocks.\n\n<p align=\"center\">\n    <img src=\"https://cocoindex.io/images/components.svg\" alt=\"CocoIndex Features\">\n</p>\n\n## Data Freshness\n\nCocoIndex keep source data and target in sync effortlessly.\n\n<p align=\"center\">\n    <img src=\"https://github.com/user-attachments/assets/f4eb29b3-84ee-4fa0-a1e2-80eedeeabde6\" alt=\"Incremental Processing\" width=\"700\">\n</p>\n\nIt has out-of-box support for incremental indexing:\n\n- minimal recomputation on source or logic change.\n- (re-)processing necessary portions; reuse cache when possible\n\n## Quick Start\n\nIf you're new to CocoIndex, we recommend checking out\n\n- \ud83d\udcd6 [Documentation](https://cocoindex.io/docs)\n- \u26a1  [Quick Start Guide](https://cocoindex.io/docs/getting_started/quickstart)\n- \ud83c\udfac [Quick Start Video Tutorial](https://youtu.be/gv5R8nOXsWU?si=9ioeKYkMEnYevTXT)\n\n### Setup\n\n1. Install CocoIndex Python library\n\n```bash\npip install -U cocoindex\n```\n\n2. [Install Postgres](https://cocoindex.io/docs/getting_started/installation#-install-postgres) if you don't have one. CocoIndex uses it for incremental processing.\n\n3. (Optional) Install Claude Code skill for enhanced development experience. Run these commands in [Claude Code](https://claude.com/claude-code):\n\n```\n/plugin marketplace add cocoindex-io/cocoindex-claude\n/plugin install cocoindex-skills@cocoindex\n```\n\n## Define data flow\n\nFollow [Quick Start Guide](https://cocoindex.io/docs/getting_started/quickstart) to define your first indexing flow. An example flow looks like:\n\n```python\n@cocoindex.flow_def(name=\"TextEmbedding\")\ndef text_embedding_flow(flow_builder: cocoindex.FlowBuilder, data_scope: cocoindex.DataScope):\n    # Add a data source to read files from a directory\n    data_scope[\"documents\"] = flow_builder.add_source(cocoindex.sources.LocalFile(path=\"markdown_files\"))\n\n    # Add a collector for data to be exported to the vector index\n    doc_embeddings = data_scope.add_collector()\n\n    # Transform data of each document\n    with data_scope[\"documents\"].row() as doc:\n        # Split the document into chunks, put into `chunks` field\n        doc[\"chunks\"] = doc[\"content\"].transform(\n            cocoindex.functions.SplitRecursively(),\n            language=\"markdown\", chunk_size=2000, chunk_overlap=500)\n\n        # Transform data of each chunk\n        with doc[\"chunks\"].row() as chunk:\n            # Embed the chunk, put into `embedding` field\n            chunk[\"embedding\"] = chunk[\"text\"].transform(\n                cocoindex.functions.SentenceTransformerEmbed(\n                    model=\"sentence-transformers/all-MiniLM-L6-v2\"))\n\n            # Collect the chunk into the collector.\n            doc_embeddings.collect(filename=doc[\"filename\"], location=chunk[\"location\"],\n                                   text=chunk[\"text\"], embedding=chunk[\"embedding\"])\n\n    # Export collected data to a vector index.\n    doc_embeddings.export(\n        \"doc_embeddings\",\n        cocoindex.targets.Postgres(),\n        primary_key_fields=[\"filename\", \"location\"],\n        vector_indexes=[\n            cocoindex.VectorIndexDef(\n                field_name=\"embedding\",\n                metric=cocoindex.VectorSimilarityMetric.COSINE_SIMILARITY)])\n```\n\nIt defines an index flow like this:\n\n<p align=\"center\">\n    <img width=\"400\" alt=\"Data Flow\" src=\"https://github.com/user-attachments/assets/2ea7be6d-3d94-42b1-b2bd-22515577e463\" />\n</p>\n\n## \ud83d\ude80 Examples and demo\n\n| Example | Description |\n|---------|-------------|\n| [Text Embedding](examples/text_embedding) | Index text documents with embeddings for semantic search |\n| [Code Embedding](examples/code_embedding) | Index code embeddings for semantic search |\n| [PDF Embedding](examples/pdf_embedding) | Parse PDF and index text embeddings for semantic search |\n| [PDF Elements Embedding](examples/pdf_elements_embedding) | Extract text and images from PDFs; embed text with SentenceTransformers and images with CLIP; store in Qdrant for multimodal search |\n| [Manuals LLM Extraction](examples/manuals_llm_extraction) | Extract structured information from a manual using LLM |\n| [Amazon S3 Embedding](examples/amazon_s3_embedding) | Index text documents from Amazon S3 |\n| [Azure Blob Storage Embedding](examples/azure_blob_embedding) | Index text documents from Azure Blob Storage |\n| [Google Drive Text Embedding](examples/gdrive_text_embedding) | Index text documents from Google Drive |\n| [Docs to Knowledge Graph](examples/docs_to_knowledge_graph) | Extract relationships from Markdown documents and build a knowledge graph |\n| [Embeddings to Qdrant](examples/text_embedding_qdrant) | Index documents in a Qdrant collection for semantic search |\n| [Embeddings to LanceDB](examples/text_embedding_lancedb) | Index documents in a LanceDB collection for semantic search |\n| [FastAPI Server with Docker](examples/fastapi_server_docker) | Run the semantic search server in a Dockerized FastAPI setup |\n| [Product Recommendation](examples/product_recommendation) | Build real-time product recommendations with LLM and graph database|\n| [Image Search with Vision API](examples/image_search) | Generates detailed captions for images using a vision model, embeds them, enables live-updating semantic search via FastAPI and served on a React frontend|\n| [Face Recognition](examples/face_recognition) | Recognize faces in images and build embedding index |\n| [Paper Metadata](examples/paper_metadata) | Index papers in PDF files, and build metadata tables for each paper |\n| [Multi Format Indexing](examples/multi_format_indexing) | Build visual document index from PDFs and images with ColPali for semantic search |\n| [Custom Source HackerNews](examples/custom_source_hn) | Index HackerNews threads and comments, using *CocoIndex Custom Source* |\n| [Custom Output Files](examples/custom_output_files) | Convert markdown files to HTML files and save them to a local directory, using *CocoIndex Custom Targets* |\n| [Patient intake form extraction](examples/patient_intake_extraction) | Use LLM to extract structured data from patient intake forms with different formats |\n| [HackerNews Trending Topics](examples/hn_trending_topics) | Extract trending topics from HackerNews threads and comments, using *CocoIndex Custom Source* and LLM |\n\nMore coming and stay tuned \ud83d\udc40!\n\n## \ud83d\udcd6 Documentation\n\nFor detailed documentation, visit [CocoIndex Documentation](https://cocoindex.io/docs), including a [Quickstart guide](https://cocoindex.io/docs/getting_started/quickstart).\n\n## \ud83e\udd1d Contributing\n\nWe love contributions from our community \u2764\ufe0f. For details on contributing or running the project for development, check out our [contributing guide](https://cocoindex.io/docs/about/contributing).\n\n## \ud83d\udc65 Community\n\nWelcome with a huge coconut hug \ud83e\udd65\u22c6\uff61\u02da\ud83e\udd17. We are super excited for community contributions of all kinds - whether it's code improvements, documentation updates, issue reports, feature requests, and discussions in our Discord.\n\nJoin our community here:\n\n- \ud83c\udf1f [Star us on GitHub](https://github.com/cocoindex-io/cocoindex)\n- \ud83d\udc4b [Join our Discord community](https://discord.com/invite/zpA9S2DR7s)\n- \u25b6\ufe0f [Subscribe to our YouTube channel](https://www.youtube.com/@cocoindex-io)\n- \ud83d\udcdc [Read our blog posts](https://cocoindex.io/blogs/)\n\n## Support us\n\nWe are constantly improving, and more features and examples are coming soon. If you love this project, please drop us a star \u2b50 at GitHub repo [![GitHub](https://img.shields.io/github/stars/cocoindex-io/cocoindex?color=5B5BD6)](https://github.com/cocoindex-io/cocoindex) to stay tuned and help us grow.\n\n## License\n\nCocoIndex is Apache 2.0 licensed.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "With CocoIndex, users declare the transformation, CocoIndex creates & maintains an index, and keeps the derived index up to date based on source update, with minimal computation and changes.",
    "version": "0.2.23",
    "project_urls": {
        "Homepage": "https://cocoindex.io/"
    },
    "split_keywords": [
        "indexing",
        " real-time",
        " incremental",
        " pipeline",
        " search",
        " ai",
        " etl",
        " rag",
        " dataflow",
        " context-engineering"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3ca4545465a96909184aa7c4b386efc1a93bb3d87f8cd47e0091476a1f403d6e",
                "md5": "d5c11b5d6a7c08982c3cd1de19cdc94e",
                "sha256": "1fe290b135497a3d4328ba9a3f1b2560e378eaf4eda340af8c0c1d79a3119cb6"
            },
            "downloads": -1,
            "filename": "cocoindex-0.2.23-cp311-abi3-macosx_10_12_x86_64.whl",
            "has_sig": false,
            "md5_digest": "d5c11b5d6a7c08982c3cd1de19cdc94e",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.11",
            "size": 16367954,
            "upload_time": "2025-10-28T06:29:54",
            "upload_time_iso_8601": "2025-10-28T06:29:54.032064Z",
            "url": "https://files.pythonhosted.org/packages/3c/a4/545465a96909184aa7c4b386efc1a93bb3d87f8cd47e0091476a1f403d6e/cocoindex-0.2.23-cp311-abi3-macosx_10_12_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d0430be7931c6cc7548ed80c345aeaefdb4163743b327a3b698b3de0a555524c",
                "md5": "6594a3d783d4beb04007cfa9604c67ec",
                "sha256": "756cf7a2f9d300e3434151b7be7940f981d47a32a815f5fa46d6376a4eff14f7"
            },
            "downloads": -1,
            "filename": "cocoindex-0.2.23-cp311-abi3-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "6594a3d783d4beb04007cfa9604c67ec",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.11",
            "size": 15753523,
            "upload_time": "2025-10-28T06:29:51",
            "upload_time_iso_8601": "2025-10-28T06:29:51.462510Z",
            "url": "https://files.pythonhosted.org/packages/d0/43/0be7931c6cc7548ed80c345aeaefdb4163743b327a3b698b3de0a555524c/cocoindex-0.2.23-cp311-abi3-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c6a0b961607ad924b981f924fe00412fa2dc0c78f379fc916a76d8e4f1d07920",
                "md5": "589a172289d5fa77298d0b41215e3a77",
                "sha256": "48a915ab2081463dda6fe8a48873469cca1166780b7446665d7291561b634698"
            },
            "downloads": -1,
            "filename": "cocoindex-0.2.23-cp311-abi3-manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "589a172289d5fa77298d0b41215e3a77",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.11",
            "size": 15858561,
            "upload_time": "2025-10-28T06:29:44",
            "upload_time_iso_8601": "2025-10-28T06:29:44.928473Z",
            "url": "https://files.pythonhosted.org/packages/c6/a0/b961607ad924b981f924fe00412fa2dc0c78f379fc916a76d8e4f1d07920/cocoindex-0.2.23-cp311-abi3-manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a2c1b245a72918f09b3ff73c46c7638daaba7cb6d6991933105ec825f13fb2f1",
                "md5": "a14111de632243422cd2fe5a0ab9d2c3",
                "sha256": "f059deafb180c6551ce610a7f74280da8ac0af0fa9406dcbe38b5733096b1f6f"
            },
            "downloads": -1,
            "filename": "cocoindex-0.2.23-cp311-abi3-manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a14111de632243422cd2fe5a0ab9d2c3",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.11",
            "size": 16763269,
            "upload_time": "2025-10-28T06:29:48",
            "upload_time_iso_8601": "2025-10-28T06:29:48.510686Z",
            "url": "https://files.pythonhosted.org/packages/a2/c1/b245a72918f09b3ff73c46c7638daaba7cb6d6991933105ec825f13fb2f1/cocoindex-0.2.23-cp311-abi3-manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "92665b28efa1ccdc54b4a37c18682ee2f2aaf2a2bc3fa87d909c860547e33720",
                "md5": "e0fec75426e1f4c58f264c6ceac5a084",
                "sha256": "64f82c25b3ce3e74216b6e6e783519f6fde7cd753eae1e5c7679d0e42d075bf3"
            },
            "downloads": -1,
            "filename": "cocoindex-0.2.23-cp311-abi3-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "e0fec75426e1f4c58f264c6ceac5a084",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.11",
            "size": 17048290,
            "upload_time": "2025-10-28T06:30:00",
            "upload_time_iso_8601": "2025-10-28T06:30:00.476392Z",
            "url": "https://files.pythonhosted.org/packages/92/66/5b28efa1ccdc54b4a37c18682ee2f2aaf2a2bc3fa87d909c860547e33720/cocoindex-0.2.23-cp311-abi3-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1a93d0ae36df4f241c05dcfa9183ac6bd29690acaf0c8b9ddf3daae85c029b9e",
                "md5": "cc2652229d387fec76950107f2506dd3",
                "sha256": "c1d8f733e2a17341bca9675e659ba5512371b0f3f47cfbbea31c0bc6a095c73f"
            },
            "downloads": -1,
            "filename": "cocoindex-0.2.23.tar.gz",
            "has_sig": false,
            "md5_digest": "cc2652229d387fec76950107f2506dd3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 30151785,
            "upload_time": "2025-10-28T06:29:57",
            "upload_time_iso_8601": "2025-10-28T06:29:57.747050Z",
            "url": "https://files.pythonhosted.org/packages/1a/93/d0ae36df4f241c05dcfa9183ac6bd29690acaf0c8b9ddf3daae85c029b9e/cocoindex-0.2.23.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-28 06:29:57",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "cocoindex"
}
        
Elapsed time: 4.71568s