cocopp


Namecocopp JSON
Version 2.7.1 PyPI version JSON
download
home_pageNone
SummaryBenchmarking framework for all types of black-box optimization algorithms, postprocessing.
upload_time2025-02-06 00:05:00
maintainerNone
docs_urlNone
authorUmut Batu, Dimo Brockhoff, Paul Dufossé, Tobias Glasmachers, Nikolaus Hansen, Filip Matzner, Olaf Mersmann, Raymond Ros, Dejan Tušar
requires_python>=3.9
licenseBSD-3-Clause
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center">
    <table border="0">
  <td>
      <img src="https://raw.githubusercontent.com/numbbo/coco/0ea5f5784c5fa0543261d9c104b490d2d95566f9/logo/coco-pp-300.webp">          
  </td>
  <td>
      COmparing Continuous Optimisers (COCO) Post-Processing 
</td>
</table>
</h1>

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2594848.svg)][paper]  
The ([`cocopp`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.html)) package uses data generated with the [COCO framework](https://numbbo.it) (comparing not only continuous optimisers) and produces output figures and tables in `html` format and for inclusion into `LaTeX` documents. The main documentation page can be found at [getting-started](https://numbbo.it/getting-started#postprocess) and in the [API documentation](https://numbbo.github.io/coco-doc/apidocs/cocopp), but see also [here](https://numbbo.it).

## Installation
To install the latest release from [PyPI](https://pypi.org/project/cocopp):

    pip install cocopp

To install the current main branch:

    git clone https://github.com/numbbo/coco-postprocess.git
    cd coco-postprocess
    pip install .

## Usage

The main method of the [`cocopp`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.html) package is [`main`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.rungeneric.html#main) (currently aliased to [`cocopp.rungeneric.main`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.rungeneric.html#main)). The [`main`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.rungeneric.html#main) method also allows basic use of the post-processing through a shell command-line interface. The recommended use is however from an IPython/Jupyter shell or notebook:

<pre class="py-doctest"><span class="py-prompt">>>></span> <span class="py-keyword">import</span> cocopp
<span class="py-prompt">>>></span> cocopp.main(<span class="py-string">'exdata/my_output another_folder yet_another_or_not'</span>)  <span class="py-comment"></span></pre>

postprocesses data from one or several folders, for example data generated with the help from the [`cocoex`](https://numbbo.github.io/coco-doc/apidocs/cocoex) module. Each folder should contain data of a full experiment with a single algorithm. (Within the folder the data can be distributed over subfolders). Results can be explored from the <tt class="rst-docutils literal">ppdata/index.html</tt> file, unless a a different output folder is specified with the <tt class="rst-docutils literal"><span class="pre">-o</span></tt> option. **Comparative data** from over 200 full experiments are archived online and can be listed, filtered, and retrieved from [archives](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.archiving.COCODataArchive.html) which are attributes of [`cocopp.archives`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.archiving.OfficialArchives.html) and processed alone or together with local data. For example

<pre class="py-doctest"><span class="py-prompt">>>></span> cocopp.archives.bbob(<span class="py-string">'bfgs'</span>)  <span class="py-comment"></span>
<span class="py-output">['2009/BFGS_...</span></pre>

lists all data sets run on the `bbob` testbed containing <tt class="rst-docutils literal">'bfgs'</tt> in their name. The first in the list can be postprocessed by

<pre class="py-doctest"><span class="py-prompt">>>></span> cocopp.main(<span class="py-string">'bfgs!'</span>)  <span class="py-comment"></span></pre>

All of them can be processed like

<pre class="py-doctest"><span class="py-prompt">>>></span> cocopp.main(<span class="py-string">'bfgs*'</span>)  <span class="py-comment"></span></pre>

Only a trailing `*` is accepted and any string containing the substring is matched. The postprocessing result of

<pre class="py-doctest"><span class="py-prompt">>>></span> cocopp.main(<span class="py-string">'bbob/2009/*'</span>)  <span class="py-comment"></span></pre>

can be browsed at [https://numbbo.github.io/ppdata-archive/bbob/2009](https://numbbo.github.io/ppdata-archive/bbob/2009). To display algorithms in the background, the [`cocopp.genericsettings.background`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.genericsettings.html) variable needs to be set:

<pre class="py-doctest"><span class="py-prompt">>>></span> cocopp.genericsettings.background = {<span class="py-builtin">None</span>: cocopp.archives.bbob.get_all(<span class="py-string">'bfgs'</span>)}  <span class="py-comment"></span></pre>

where [`None`](http://docs.python.org/library/constants.html#None) invokes the default color (grey) and line style (solid) [`cocopp.genericsettings.background_default_style`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.genericsettings.html). Now we could compare our own data with the first <tt class="rst-docutils literal">'bfgs'</tt>-matching archived algorithm where all other archived BFGS data are shown in the background with the command

<pre class="py-doctest"><span class="py-prompt">>>></span> cocopp.main(<span class="py-string">'exdata/my_output bfgs!'</span>)  <span class="py-comment"></span></pre>

[paper]: https://doi.org/10.5281/zenodo.2594848


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cocopp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Umut Batu, Dimo Brockhoff, Paul Dufoss\u00e9, Tobias Glasmachers, Nikolaus Hansen, Filip Matzner, Olaf Mersmann, Raymond Ros, Dejan Tu\u0161ar",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/01/cf/706122cc19a13737b3b4f29bbe5fc7a4fea4bc4e11deb0c82672f399a099/cocopp-2.7.1.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\">\n    <table border=\"0\">\n  <td>\n      <img src=\"https://raw.githubusercontent.com/numbbo/coco/0ea5f5784c5fa0543261d9c104b490d2d95566f9/logo/coco-pp-300.webp\">          \n  </td>\n  <td>\n      COmparing Continuous Optimisers (COCO) Post-Processing \n</td>\n</table>\n</h1>\n\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2594848.svg)][paper]  \nThe ([`cocopp`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.html)) package uses data generated with the [COCO framework](https://numbbo.it) (comparing not only continuous optimisers) and produces output figures and tables in `html` format and for inclusion into `LaTeX` documents. The main documentation page can be found at [getting-started](https://numbbo.it/getting-started#postprocess) and in the [API documentation](https://numbbo.github.io/coco-doc/apidocs/cocopp), but see also [here](https://numbbo.it).\n\n## Installation\nTo install the latest release from [PyPI](https://pypi.org/project/cocopp):\n\n    pip install cocopp\n\nTo install the current main branch:\n\n    git clone https://github.com/numbbo/coco-postprocess.git\n    cd coco-postprocess\n    pip install .\n\n## Usage\n\nThe main method of the [`cocopp`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.html) package is [`main`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.rungeneric.html#main) (currently aliased to [`cocopp.rungeneric.main`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.rungeneric.html#main)). The [`main`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.rungeneric.html#main) method also allows basic use of the post-processing through a shell command-line interface. The recommended use is however from an IPython/Jupyter shell or notebook:\n\n<pre class=\"py-doctest\"><span class=\"py-prompt\">>>></span> <span class=\"py-keyword\">import</span> cocopp\n<span class=\"py-prompt\">>>></span> cocopp.main(<span class=\"py-string\">'exdata/my_output another_folder yet_another_or_not'</span>)  <span class=\"py-comment\"></span></pre>\n\npostprocesses data from one or several folders, for example data generated with the help from the [`cocoex`](https://numbbo.github.io/coco-doc/apidocs/cocoex) module. Each folder should contain data of a full experiment with a single algorithm. (Within the folder the data can be distributed over subfolders). Results can be explored from the <tt class=\"rst-docutils literal\">ppdata/index.html</tt> file, unless a a different output folder is specified with the <tt class=\"rst-docutils literal\"><span class=\"pre\">-o</span></tt> option. **Comparative data** from over 200 full experiments are archived online and can be listed, filtered, and retrieved from [archives](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.archiving.COCODataArchive.html) which are attributes of [`cocopp.archives`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.archiving.OfficialArchives.html) and processed alone or together with local data. For example\n\n<pre class=\"py-doctest\"><span class=\"py-prompt\">>>></span> cocopp.archives.bbob(<span class=\"py-string\">'bfgs'</span>)  <span class=\"py-comment\"></span>\n<span class=\"py-output\">['2009/BFGS_...</span></pre>\n\nlists all data sets run on the `bbob` testbed containing <tt class=\"rst-docutils literal\">'bfgs'</tt> in their name. The first in the list can be postprocessed by\n\n<pre class=\"py-doctest\"><span class=\"py-prompt\">>>></span> cocopp.main(<span class=\"py-string\">'bfgs!'</span>)  <span class=\"py-comment\"></span></pre>\n\nAll of them can be processed like\n\n<pre class=\"py-doctest\"><span class=\"py-prompt\">>>></span> cocopp.main(<span class=\"py-string\">'bfgs*'</span>)  <span class=\"py-comment\"></span></pre>\n\nOnly a trailing `*` is accepted and any string containing the substring is matched. The postprocessing result of\n\n<pre class=\"py-doctest\"><span class=\"py-prompt\">>>></span> cocopp.main(<span class=\"py-string\">'bbob/2009/*'</span>)  <span class=\"py-comment\"></span></pre>\n\ncan be browsed at [https://numbbo.github.io/ppdata-archive/bbob/2009](https://numbbo.github.io/ppdata-archive/bbob/2009). To display algorithms in the background, the [`cocopp.genericsettings.background`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.genericsettings.html) variable needs to be set:\n\n<pre class=\"py-doctest\"><span class=\"py-prompt\">>>></span> cocopp.genericsettings.background = {<span class=\"py-builtin\">None</span>: cocopp.archives.bbob.get_all(<span class=\"py-string\">'bfgs'</span>)}  <span class=\"py-comment\"></span></pre>\n\nwhere [`None`](http://docs.python.org/library/constants.html#None) invokes the default color (grey) and line style (solid) [`cocopp.genericsettings.background_default_style`](https://numbbo.github.io/coco-doc/apidocs/cocopp/cocopp.genericsettings.html). Now we could compare our own data with the first <tt class=\"rst-docutils literal\">'bfgs'</tt>-matching archived algorithm where all other archived BFGS data are shown in the background with the command\n\n<pre class=\"py-doctest\"><span class=\"py-prompt\">>>></span> cocopp.main(<span class=\"py-string\">'exdata/my_output bfgs!'</span>)  <span class=\"py-comment\"></span></pre>\n\n[paper]: https://doi.org/10.5281/zenodo.2594848\n\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Benchmarking framework for all types of black-box optimization algorithms, postprocessing.",
    "version": "2.7.1",
    "project_urls": {
        "Homepage": "https://coco-platform.org",
        "Issues": "https://github.com/numbbo/coco-postprocess/issues",
        "Repository": "https://github.com/numbbo/coco-postprocess"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "01cf706122cc19a13737b3b4f29bbe5fc7a4fea4bc4e11deb0c82672f399a099",
                "md5": "0af007aa01c19807a890d4504feacf24",
                "sha256": "9ba9e908f4038e6de8704543f2fce86f435fd7dcfe18d0ee8770992a34777aac"
            },
            "downloads": -1,
            "filename": "cocopp-2.7.1.tar.gz",
            "has_sig": false,
            "md5_digest": "0af007aa01c19807a890d4504feacf24",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 8620934,
            "upload_time": "2025-02-06T00:05:00",
            "upload_time_iso_8601": "2025-02-06T00:05:00.512014Z",
            "url": "https://files.pythonhosted.org/packages/01/cf/706122cc19a13737b3b4f29bbe5fc7a4fea4bc4e11deb0c82672f399a099/cocopp-2.7.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-06 00:05:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "numbbo",
    "github_project": "coco-postprocess",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "cocopp"
}
        
Elapsed time: 1.49331s