# Community Detection in Large-Scale Complex Networks via Structural Entropy Game (CoDeSEG)
CoDeSEG supports undirected, directed, weighted, unweighted, overlapping, non-overlapping, and dynamic community detection. The relevant parameter descriptions are as follows:
| Parameter | Description | Type | Default | Required |
|----------------|------------------------------------------------|---------|----------|----------|
| `in_path` | Input file of graph edge list | file | None | Yes |
| `out_path` | Output file of communities | file | None | Yes |
| `ground_truth` | Ground truth file | file | No | No |
| `weighted` | Weighted graph | bool | false | No |
| `directed` | directed graph | bool | false | No |
| `dynamic` | dynamic graph | bool | false | No |
| `overlap` | Overlapping communities | bool | false | No |
| `gamma` | Overlapping detecting factor | float | 1.0 | No |
| `tau` | Non-overlapping entropy threshold | float | 0.3 | No |
| `r` | Stable round threshold for dynamic detection | int | 2 | No |
| `it` | Maximum number of iterations | int | 10 | No |
| `parallel` | Number of threads | int | 1 | No |
| `verbose` | Print detection iteration messages | bool | false | No |
## Note
### Build Requirements
- CMake >= 3.22
- python >= 3.8
### data format
The format of the input edge list is as follows:
```text
1 \t 2 \n
1 \t 3 \n
2 \t 3 \n
```
For dynamic graphs, the input should be a file containing edge lists of multiple network snapshots, stored in the `/data/ntwk` directory. The file structure is as follows:
```text
data(your dataset)/
├── ntwk
├── 1.txt
├── 2.txt
├── 3.txt
...
```
Raw data
{
"_id": null,
"home_page": "https://github.com/Kust-lp/CoDeSEG",
"name": "codeseg",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "community detection, graph clustering",
"author": "Pu Li",
"author_email": "lipu2024626@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/ff/44/6f486ed76e0526389695d20819d45964cb0a9fe9f4fcaf3cae22f1acb006/codeseg-1.0.3.tar.gz",
"platform": null,
"description": "\n# Community Detection in Large-Scale Complex Networks via Structural Entropy Game (CoDeSEG)\n\nCoDeSEG supports undirected, directed, weighted, unweighted, overlapping, non-overlapping, and dynamic community detection. The relevant parameter descriptions are as follows:\n\n| Parameter | Description | Type | Default | Required |\n|----------------|------------------------------------------------|---------|----------|----------|\n| `in_path` | Input file of graph edge list | file | None | Yes |\n| `out_path` | Output file of communities | file | None | Yes |\n| `ground_truth` | Ground truth file | file | No | No |\n| `weighted` | Weighted graph | bool | false | No |\n| `directed` | directed graph | bool | false | No |\n| `dynamic` | dynamic graph | bool | false | No |\n| `overlap` | Overlapping communities | bool | false | No |\n| `gamma` | Overlapping detecting factor | float | 1.0 | No |\n| `tau` | Non-overlapping entropy threshold | float | 0.3 | No |\n| `r` | Stable round threshold for dynamic detection | int | 2 | No |\n| `it` | Maximum number of iterations | int | 10 | No |\n| `parallel` | Number of threads | int | 1 | No |\n| `verbose` | Print detection iteration messages | bool | false | No |\n\n\n## Note\n### Build Requirements\n- CMake >= 3.22\n- python >= 3.8\n\n### data format\nThe format of the input edge list is as follows:\n```text\n 1 \\t 2 \\n\n 1 \\t 3 \\n\n 2 \\t 3 \\n\n``` \nFor dynamic graphs, the input should be a file containing edge lists of multiple network snapshots, stored in the `/data/ntwk` directory. The file structure is as follows:\n```text\ndata(your dataset)/ \n\u251c\u2500\u2500 ntwk \n \u251c\u2500\u2500 1.txt\n \u251c\u2500\u2500 2.txt\n \u251c\u2500\u2500 3.txt\n ...\n``` \n",
"bugtrack_url": null,
"license": null,
"summary": "CoDeSEG Community Detection Package",
"version": "1.0.3",
"project_urls": {
"Homepage": "https://github.com/Kust-lp/CoDeSEG"
},
"split_keywords": [
"community detection",
" graph clustering"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "ff446f486ed76e0526389695d20819d45964cb0a9fe9f4fcaf3cae22f1acb006",
"md5": "8d3c6acb0fb5666f84026bbd763edfda",
"sha256": "635252ae90dac286795b7f37aa89176e1a61e810e93eb13f871249018d146443"
},
"downloads": -1,
"filename": "codeseg-1.0.3.tar.gz",
"has_sig": false,
"md5_digest": "8d3c6acb0fb5666f84026bbd763edfda",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 32926,
"upload_time": "2025-07-11T10:46:01",
"upload_time_iso_8601": "2025-07-11T10:46:01.838738Z",
"url": "https://files.pythonhosted.org/packages/ff/44/6f486ed76e0526389695d20819d45964cb0a9fe9f4fcaf3cae22f1acb006/codeseg-1.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-11 10:46:01",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Kust-lp",
"github_project": "CoDeSEG",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "codeseg"
}