codeseg


Namecodeseg JSON
Version 1.0.3 PyPI version JSON
download
home_pagehttps://github.com/Kust-lp/CoDeSEG
SummaryCoDeSEG Community Detection Package
upload_time2025-07-11 10:46:01
maintainerNone
docs_urlNone
authorPu Li
requires_python>=3.8
licenseNone
keywords community detection graph clustering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Community Detection in Large-Scale Complex Networks via Structural Entropy Game (CoDeSEG)

CoDeSEG supports undirected, directed, weighted, unweighted, overlapping, non-overlapping, and dynamic community detection. The relevant parameter descriptions are as follows:

| Parameter      | Description                                    | Type    | Default  | Required |
|----------------|------------------------------------------------|---------|----------|----------|
| `in_path`      | Input file of graph edge list                  | file    | None     | Yes      |
| `out_path`     | Output file of communities                     | file    | None     | Yes      |
| `ground_truth` | Ground truth file                              | file    | No       | No       |
| `weighted`     | Weighted graph                                 | bool    | false    | No       |
| `directed`     | directed graph                                 | bool    | false    | No       |
| `dynamic`      | dynamic graph                                  | bool    | false    | No       |
| `overlap`      | Overlapping communities                        | bool    | false    | No       |
| `gamma`        | Overlapping detecting factor                   | float   | 1.0      | No       |
| `tau`          | Non-overlapping entropy threshold              | float   | 0.3      | No       |
| `r`            | Stable round threshold for dynamic detection   | int     | 2        | No       |
| `it`           | Maximum number of iterations                   | int     | 10       | No       |
| `parallel`     | Number of threads                              | int     | 1        | No       |
| `verbose`      | Print detection iteration messages             | bool    | false    | No       |


## Note
### Build Requirements
- CMake >= 3.22
- python >= 3.8

### data format
The format of the input edge list is as follows:
```text
   1 \t 2 \n
   1 \t 3 \n
   2 \t 3 \n
``` 
For dynamic graphs, the input should be a file containing edge lists of multiple network snapshots, stored in the `/data/ntwk` directory. The file structure is as follows:
```text
data(your dataset)/ 
├── ntwk 
    ├── 1.txt
    ├── 2.txt
    ├── 3.txt
    ...
``` 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Kust-lp/CoDeSEG",
    "name": "codeseg",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "community detection, graph clustering",
    "author": "Pu Li",
    "author_email": "lipu2024626@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ff/44/6f486ed76e0526389695d20819d45964cb0a9fe9f4fcaf3cae22f1acb006/codeseg-1.0.3.tar.gz",
    "platform": null,
    "description": "\n# Community Detection in Large-Scale Complex Networks via Structural Entropy Game (CoDeSEG)\n\nCoDeSEG supports undirected, directed, weighted, unweighted, overlapping, non-overlapping, and dynamic community detection. The relevant parameter descriptions are as follows:\n\n| Parameter      | Description                                    | Type    | Default  | Required |\n|----------------|------------------------------------------------|---------|----------|----------|\n| `in_path`      | Input file of graph edge list                  | file    | None     | Yes      |\n| `out_path`     | Output file of communities                     | file    | None     | Yes      |\n| `ground_truth` | Ground truth file                              | file    | No       | No       |\n| `weighted`     | Weighted graph                                 | bool    | false    | No       |\n| `directed`     | directed graph                                 | bool    | false    | No       |\n| `dynamic`      | dynamic graph                                  | bool    | false    | No       |\n| `overlap`      | Overlapping communities                        | bool    | false    | No       |\n| `gamma`        | Overlapping detecting factor                   | float   | 1.0      | No       |\n| `tau`          | Non-overlapping entropy threshold              | float   | 0.3      | No       |\n| `r`            | Stable round threshold for dynamic detection   | int     | 2        | No       |\n| `it`           | Maximum number of iterations                   | int     | 10       | No       |\n| `parallel`     | Number of threads                              | int     | 1        | No       |\n| `verbose`      | Print detection iteration messages             | bool    | false    | No       |\n\n\n## Note\n### Build Requirements\n- CMake >= 3.22\n- python >= 3.8\n\n### data format\nThe format of the input edge list is as follows:\n```text\n   1 \\t 2 \\n\n   1 \\t 3 \\n\n   2 \\t 3 \\n\n``` \nFor dynamic graphs, the input should be a file containing edge lists of multiple network snapshots, stored in the `/data/ntwk` directory. The file structure is as follows:\n```text\ndata(your dataset)/ \n\u251c\u2500\u2500 ntwk \n    \u251c\u2500\u2500 1.txt\n    \u251c\u2500\u2500 2.txt\n    \u251c\u2500\u2500 3.txt\n    ...\n``` \n",
    "bugtrack_url": null,
    "license": null,
    "summary": "CoDeSEG Community Detection Package",
    "version": "1.0.3",
    "project_urls": {
        "Homepage": "https://github.com/Kust-lp/CoDeSEG"
    },
    "split_keywords": [
        "community detection",
        " graph clustering"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ff446f486ed76e0526389695d20819d45964cb0a9fe9f4fcaf3cae22f1acb006",
                "md5": "8d3c6acb0fb5666f84026bbd763edfda",
                "sha256": "635252ae90dac286795b7f37aa89176e1a61e810e93eb13f871249018d146443"
            },
            "downloads": -1,
            "filename": "codeseg-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "8d3c6acb0fb5666f84026bbd763edfda",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 32926,
            "upload_time": "2025-07-11T10:46:01",
            "upload_time_iso_8601": "2025-07-11T10:46:01.838738Z",
            "url": "https://files.pythonhosted.org/packages/ff/44/6f486ed76e0526389695d20819d45964cb0a9fe9f4fcaf3cae22f1acb006/codeseg-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-11 10:46:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Kust-lp",
    "github_project": "CoDeSEG",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "codeseg"
}
        
Elapsed time: 1.58391s