cognet


Namecognet JSON
Version 0.0.207 PyPI version JSON
download
home_pagehttps://github.com/zeroknowledgediscovery/cognet
SummaryInfering Emergent Dependency Structures In Survey Responses
upload_time2023-02-10 18:58:53
maintainer
docs_urlNone
authorzed.uchicago.edu
requires_python>=3.6
licenseLICENSE
keywords computational social science decision trees machine learning cognitive dissonance
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ===============
Cognet
===============

.. image:: https://zenodo.org/badge/388924904.svg
   :target: https://zenodo.org/badge/latestdoi/388924904


.. image:: http://zed.uchicago.edu/logo/cognet_logo.png
   :height: 300px
   :scale: 25%
   :alt: cognet logo
   :align: center

.. class:: no-web no-pdf

:Info: Draft link will be posted here
:Author: ZeD@UChicago <zed.uchicago.edu>
:Description: Application of quasinets (https://pypi.org/project/quasinet/) for analysis of emergent structures in survey responses with application in  adversarial contexts. 
:Documentation: https://zeroknowledgediscovery.github.io/cognet/


**Usage:**

.. code-block::

    from cognet.cognet import cognet as cg
    from cognet.dataFormatter import dataFormatter
    from cognet.model import model 


    data = dataFormatter(samples=GSSDATA,
                test_size=0.5)




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/zeroknowledgediscovery/cognet",
    "name": "cognet",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "computational social science,decision trees,machine learning,cognitive dissonance",
    "author": "zed.uchicago.edu",
    "author_email": "ishanu@uchicago.edu",
    "download_url": "https://files.pythonhosted.org/packages/91/4a/9a9fa20f09a7e1c91f2123b1ad57b6c3f2dee77a0292a0cf6f109001ddc1/cognet-0.0.207.tar.gz",
    "platform": null,
    "description": "===============\nCognet\n===============\n\n.. image:: https://zenodo.org/badge/388924904.svg\n   :target: https://zenodo.org/badge/latestdoi/388924904\n\n\n.. image:: http://zed.uchicago.edu/logo/cognet_logo.png\n   :height: 300px\n   :scale: 25%\n   :alt: cognet logo\n   :align: center\n\n.. class:: no-web no-pdf\n\n:Info: Draft link will be posted here\n:Author: ZeD@UChicago <zed.uchicago.edu>\n:Description: Application of quasinets (https://pypi.org/project/quasinet/) for analysis of emergent structures in survey responses with application in  adversarial contexts. \n:Documentation: https://zeroknowledgediscovery.github.io/cognet/\n\n\n**Usage:**\n\n.. code-block::\n\n    from cognet.cognet import cognet as cg\n    from cognet.dataFormatter import dataFormatter\n    from cognet.model import model \n\n\n    data = dataFormatter(samples=GSSDATA,\n                test_size=0.5)\n\n\n\n",
    "bugtrack_url": null,
    "license": "LICENSE",
    "summary": "Infering Emergent Dependency Structures In Survey Responses",
    "version": "0.0.207",
    "split_keywords": [
        "computational social science",
        "decision trees",
        "machine learning",
        "cognitive dissonance"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "615c9eba51dfda29b608da0aa672d0ffa3bf773159cfc5c599051d43c04ba96d",
                "md5": "fd7e832ab2b0e85da1b6a7bbe1babf2b",
                "sha256": "930fa03f9f497db626225980b0ed63f715ef5fd3097f4a2927fe366f80edc503"
            },
            "downloads": -1,
            "filename": "cognet-0.0.207-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fd7e832ab2b0e85da1b6a7bbe1babf2b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 1661938,
            "upload_time": "2023-02-10T18:58:50",
            "upload_time_iso_8601": "2023-02-10T18:58:50.609928Z",
            "url": "https://files.pythonhosted.org/packages/61/5c/9eba51dfda29b608da0aa672d0ffa3bf773159cfc5c599051d43c04ba96d/cognet-0.0.207-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "914a9a9fa20f09a7e1c91f2123b1ad57b6c3f2dee77a0292a0cf6f109001ddc1",
                "md5": "2fa83a24cd3befdd0dde16ae6be79d4d",
                "sha256": "58c942f752f39d66233e22ed2b7d6256e770e1e140aa97b387047de093f34739"
            },
            "downloads": -1,
            "filename": "cognet-0.0.207.tar.gz",
            "has_sig": false,
            "md5_digest": "2fa83a24cd3befdd0dde16ae6be79d4d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 43255293,
            "upload_time": "2023-02-10T18:58:53",
            "upload_time_iso_8601": "2023-02-10T18:58:53.911243Z",
            "url": "https://files.pythonhosted.org/packages/91/4a/9a9fa20f09a7e1c91f2123b1ad57b6c3f2dee77a0292a0cf6f109001ddc1/cognet-0.0.207.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-10 18:58:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "zeroknowledgediscovery",
    "github_project": "cognet",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "cognet"
}
        
Elapsed time: 0.04468s