[![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)
# CogNetX
[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)
CogNetX is an advanced, multimodal neural network architecture inspired by human cognition. It integrates speech, vision, and video processing into one unified framework. Built with PyTorch, CogNetX leverages cutting-edge neural networks such as Transformers, Conformers, and CNNs to handle complex multimodal tasks. The architecture is designed to process inputs like speech, images, and video, and output coherent, human-like text.
## Key Features
- **Speech Processing**: Uses a Conformer network to handle speech inputs with extreme efficiency and accuracy.
- **Vision Processing**: Employs a ResNet-based Convolutional Neural Network (CNN) for robust image understanding.
- **Video Processing**: Utilizes a 3D CNN architecture for real-time video analysis and feature extraction.
- **Text Generation**: Integrates a Transformer model to process and generate human-readable text, combining the features from speech, vision, and video.
- **Multimodal Fusion**: Combines multiple input streams into a unified architecture, mimicking how humans process various types of sensory information.
## Architecture Overview
CogNetX brings together several cutting-edge neural networks:
- **Conformer** for high-quality speech recognition.
- **Transformer** for text generation and processing.
- **ResNet** for vision and image recognition tasks.
- **3D CNN** for video stream processing.
The architecture is designed to be highly modular, allowing easy extension and integration of additional modalities.
### Neural Networks Used
- **Speech**: [Conformer](https://arxiv.org/abs/2005.08100)
- **Vision**: [ResNet50](https://arxiv.org/abs/1512.03385)
- **Video**: [3D CNN (R3D-18)](https://arxiv.org/abs/1711.11248)
- **Text**: [Transformer](https://arxiv.org/abs/1706.03762)
## Installation
To set up and use CogNetX, first clone the repository:
```bash
git clone https://github.com/kyegomez/CogNetX
cd CogNetX
pip install -r requirements.txt
```
### Requirements
- Python 3.8+
- PyTorch 1.10+
- Torchvision
- Torchaudio
Install the required packages with:
```bash
pip install torch torchvision torchaudio
```
## Usage
### Model Architecture
```python
import torch
from cognetx.model import CogNetX
if __name__ == "__main__":
# Example configuration and usage
config = {
"speech_input_dim": 80, # For example, 80 Mel-filterbank features
"speech_num_layers": 4,
"speech_num_heads": 8,
"encoder_dim": 256,
"decoder_dim": 512,
"vocab_size": 10000,
"embedding_dim": 512,
"decoder_num_layers": 6,
"decoder_num_heads": 8,
"dropout": 0.1,
"depthwise_conv_kernel_size": 31,
}
model = CogNetX(config)
# Dummy inputs
batch_size = 2
speech_input = torch.randn(
batch_size, 500, config["speech_input_dim"]
) # (batch_size, time_steps, feature_dim)
vision_input = torch.randn(
batch_size, 3, 224, 224
) # (batch_size, 3, H, W)
video_input = torch.randn(
batch_size, 3, 16, 112, 112
) # (batch_size, 3, time_steps, H, W)
tgt_input = torch.randint(
0, config["vocab_size"], (20, batch_size)
) # (tgt_seq_len, batch_size)
# Forward pass
output = model(speech_input, vision_input, video_input, tgt_input)
print(
output.shape
) # Expected: (tgt_seq_len, batch_size, vocab_size)
```
### Example Pipeline
1. **Speech Input**: Provide raw speech data or features extracted via an MFCC filter.
2. **Vision Input**: Use images or frame snapshots from video.
3. **Video Input**: Feed the network with video sequences.
4. **Text Output**: The model will generate a text output based on the combined multimodal input.
### Running the Example
To test CogNetX with some example data, run:
```bash
python example.py
```
## Code Structure
- `cognetx/`: Contains the core neural network classes.
- `model`: The entire model model architecture.
- `example.py`: Example script to test the architecture with dummy data.
## Future Work
- Add support for additional modalities such as EEG signals or tactile data.
- Optimize the model for real-time performance across edge devices.
- Implement transfer learning and fine-tuning on various datasets.
## Contributing
Contributions are welcome! Please submit a pull request or open an issue if you want to suggest an improvement.
### Steps to Contribute
1. Fork the repository
2. Create a feature branch (`git checkout -b feature/awesome-feature`)
3. Commit your changes (`git commit -am 'Add awesome feature'`)
4. Push to the branch (`git push origin feature/awesome-feature`)
5. Open a pull request
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/CogNetX",
"name": "cognetx",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/1c/da/af7fd4976899cfeeed3620c699732e37ac18c3b58ef3b08bcc7b9c08cdc0/cognetx-0.0.1.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)\n\n# CogNetX\n\n[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)\n\n\n\nCogNetX is an advanced, multimodal neural network architecture inspired by human cognition. It integrates speech, vision, and video processing into one unified framework. Built with PyTorch, CogNetX leverages cutting-edge neural networks such as Transformers, Conformers, and CNNs to handle complex multimodal tasks. The architecture is designed to process inputs like speech, images, and video, and output coherent, human-like text.\n\n## Key Features\n- **Speech Processing**: Uses a Conformer network to handle speech inputs with extreme efficiency and accuracy.\n- **Vision Processing**: Employs a ResNet-based Convolutional Neural Network (CNN) for robust image understanding.\n- **Video Processing**: Utilizes a 3D CNN architecture for real-time video analysis and feature extraction.\n- **Text Generation**: Integrates a Transformer model to process and generate human-readable text, combining the features from speech, vision, and video.\n- **Multimodal Fusion**: Combines multiple input streams into a unified architecture, mimicking how humans process various types of sensory information.\n\n## Architecture Overview\n\nCogNetX brings together several cutting-edge neural networks:\n- **Conformer** for high-quality speech recognition.\n- **Transformer** for text generation and processing.\n- **ResNet** for vision and image recognition tasks.\n- **3D CNN** for video stream processing.\n\nThe architecture is designed to be highly modular, allowing easy extension and integration of additional modalities.\n\n### Neural Networks Used\n- **Speech**: [Conformer](https://arxiv.org/abs/2005.08100)\n- **Vision**: [ResNet50](https://arxiv.org/abs/1512.03385)\n- **Video**: [3D CNN (R3D-18)](https://arxiv.org/abs/1711.11248)\n- **Text**: [Transformer](https://arxiv.org/abs/1706.03762)\n\n## Installation\n\nTo set up and use CogNetX, first clone the repository:\n\n```bash\ngit clone https://github.com/kyegomez/CogNetX\ncd CogNetX\npip install -r requirements.txt\n```\n\n### Requirements\n- Python 3.8+\n- PyTorch 1.10+\n- Torchvision\n- Torchaudio\n\nInstall the required packages with:\n\n```bash\npip install torch torchvision torchaudio\n```\n\n## Usage\n\n### Model Architecture\n\n```python\nimport torch\nfrom cognetx.model import CogNetX\n\nif __name__ == \"__main__\":\n # Example configuration and usage\n config = {\n \"speech_input_dim\": 80, # For example, 80 Mel-filterbank features\n \"speech_num_layers\": 4,\n \"speech_num_heads\": 8,\n \"encoder_dim\": 256,\n \"decoder_dim\": 512,\n \"vocab_size\": 10000,\n \"embedding_dim\": 512,\n \"decoder_num_layers\": 6,\n \"decoder_num_heads\": 8,\n \"dropout\": 0.1,\n \"depthwise_conv_kernel_size\": 31,\n }\n\n model = CogNetX(config)\n\n # Dummy inputs\n batch_size = 2\n speech_input = torch.randn(\n batch_size, 500, config[\"speech_input_dim\"]\n ) # (batch_size, time_steps, feature_dim)\n vision_input = torch.randn(\n batch_size, 3, 224, 224\n ) # (batch_size, 3, H, W)\n video_input = torch.randn(\n batch_size, 3, 16, 112, 112\n ) # (batch_size, 3, time_steps, H, W)\n tgt_input = torch.randint(\n 0, config[\"vocab_size\"], (20, batch_size)\n ) # (tgt_seq_len, batch_size)\n\n # Forward pass\n output = model(speech_input, vision_input, video_input, tgt_input)\n print(\n output.shape\n ) # Expected: (tgt_seq_len, batch_size, vocab_size)\n\n```\n\n### Example Pipeline\n\n1. **Speech Input**: Provide raw speech data or features extracted via an MFCC filter.\n2. **Vision Input**: Use images or frame snapshots from video.\n3. **Video Input**: Feed the network with video sequences.\n4. **Text Output**: The model will generate a text output based on the combined multimodal input.\n\n### Running the Example\n\nTo test CogNetX with some example data, run:\n\n```bash\npython example.py\n```\n\n## Code Structure\n\n- `cognetx/`: Contains the core neural network classes.\n - `model`: The entire model model architecture.\n- `example.py`: Example script to test the architecture with dummy data.\n\n## Future Work\n- Add support for additional modalities such as EEG signals or tactile data.\n- Optimize the model for real-time performance across edge devices.\n- Implement transfer learning and fine-tuning on various datasets.\n\n## Contributing\nContributions are welcome! Please submit a pull request or open an issue if you want to suggest an improvement.\n\n### Steps to Contribute\n1. Fork the repository\n2. Create a feature branch (`git checkout -b feature/awesome-feature`)\n3. Commit your changes (`git commit -am 'Add awesome feature'`)\n4. Push to the branch (`git push origin feature/awesome-feature`)\n5. Open a pull request\n\n## License\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "cognetx - Pytorch",
"version": "0.0.1",
"project_urls": {
"Documentation": "https://github.com/kyegomez/CogNetX",
"Homepage": "https://github.com/kyegomez/CogNetX",
"Repository": "https://github.com/kyegomez/CogNetX"
},
"split_keywords": [
"artificial intelligence",
" deep learning",
" optimizers",
" prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "03ed9963f539c1408dce4f9886c2825407c117d90cdf19459eeb295c65006c31",
"md5": "3f4c8c434ea89b42db26cc8bff9de34b",
"sha256": "cc5fa0f2148fe84a891847f3cd17c5893d7e36c0690ddff8925e49abbe716ebb"
},
"downloads": -1,
"filename": "cognetx-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3f4c8c434ea89b42db26cc8bff9de34b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 6619,
"upload_time": "2024-09-21T01:33:55",
"upload_time_iso_8601": "2024-09-21T01:33:55.027077Z",
"url": "https://files.pythonhosted.org/packages/03/ed/9963f539c1408dce4f9886c2825407c117d90cdf19459eeb295c65006c31/cognetx-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1cdaaf7fd4976899cfeeed3620c699732e37ac18c3b58ef3b08bcc7b9c08cdc0",
"md5": "b37f59130bc4128b0e661da35d43c710",
"sha256": "c005e9ed35ddcfe7e514b6c174d171812cc75932ce379c96aa4a9085f3c959b9"
},
"downloads": -1,
"filename": "cognetx-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "b37f59130bc4128b0e661da35d43c710",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 6359,
"upload_time": "2024-09-21T01:33:56",
"upload_time_iso_8601": "2024-09-21T01:33:56.815163Z",
"url": "https://files.pythonhosted.org/packages/1c/da/af7fd4976899cfeeed3620c699732e37ac18c3b58ef3b08bcc7b9c08cdc0/cognetx-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-21 01:33:56",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "CogNetX",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "torch",
"specs": []
},
{
"name": "zetascale",
"specs": []
},
{
"name": "swarms",
"specs": []
}
],
"lcname": "cognetx"
}