cognetx


Namecognetx JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/CogNetX
Summarycognetx - Pytorch
upload_time2024-09-21 01:33:56
maintainerNone
docs_urlNone
authorKye Gomez
requires_python<4.0,>=3.10
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements torch zetascale swarms
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)

# CogNetX

[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)



CogNetX is an advanced, multimodal neural network architecture inspired by human cognition. It integrates speech, vision, and video processing into one unified framework. Built with PyTorch, CogNetX leverages cutting-edge neural networks such as Transformers, Conformers, and CNNs to handle complex multimodal tasks. The architecture is designed to process inputs like speech, images, and video, and output coherent, human-like text.

## Key Features
- **Speech Processing**: Uses a Conformer network to handle speech inputs with extreme efficiency and accuracy.
- **Vision Processing**: Employs a ResNet-based Convolutional Neural Network (CNN) for robust image understanding.
- **Video Processing**: Utilizes a 3D CNN architecture for real-time video analysis and feature extraction.
- **Text Generation**: Integrates a Transformer model to process and generate human-readable text, combining the features from speech, vision, and video.
- **Multimodal Fusion**: Combines multiple input streams into a unified architecture, mimicking how humans process various types of sensory information.

## Architecture Overview

CogNetX brings together several cutting-edge neural networks:
- **Conformer** for high-quality speech recognition.
- **Transformer** for text generation and processing.
- **ResNet** for vision and image recognition tasks.
- **3D CNN** for video stream processing.

The architecture is designed to be highly modular, allowing easy extension and integration of additional modalities.

### Neural Networks Used
- **Speech**: [Conformer](https://arxiv.org/abs/2005.08100)
- **Vision**: [ResNet50](https://arxiv.org/abs/1512.03385)
- **Video**: [3D CNN (R3D-18)](https://arxiv.org/abs/1711.11248)
- **Text**: [Transformer](https://arxiv.org/abs/1706.03762)

## Installation

To set up and use CogNetX, first clone the repository:

```bash
git clone https://github.com/kyegomez/CogNetX
cd CogNetX
pip install -r requirements.txt
```

### Requirements
- Python 3.8+
- PyTorch 1.10+
- Torchvision
- Torchaudio

Install the required packages with:

```bash
pip install torch torchvision torchaudio
```

## Usage

### Model Architecture

```python
import torch
from cognetx.model import CogNetX

if __name__ == "__main__":
    # Example configuration and usage
    config = {
        "speech_input_dim": 80,  # For example, 80 Mel-filterbank features
        "speech_num_layers": 4,
        "speech_num_heads": 8,
        "encoder_dim": 256,
        "decoder_dim": 512,
        "vocab_size": 10000,
        "embedding_dim": 512,
        "decoder_num_layers": 6,
        "decoder_num_heads": 8,
        "dropout": 0.1,
        "depthwise_conv_kernel_size": 31,
    }

    model = CogNetX(config)

    # Dummy inputs
    batch_size = 2
    speech_input = torch.randn(
        batch_size, 500, config["speech_input_dim"]
    )  # (batch_size, time_steps, feature_dim)
    vision_input = torch.randn(
        batch_size, 3, 224, 224
    )  # (batch_size, 3, H, W)
    video_input = torch.randn(
        batch_size, 3, 16, 112, 112
    )  # (batch_size, 3, time_steps, H, W)
    tgt_input = torch.randint(
        0, config["vocab_size"], (20, batch_size)
    )  # (tgt_seq_len, batch_size)

    # Forward pass
    output = model(speech_input, vision_input, video_input, tgt_input)
    print(
        output.shape
    )  # Expected: (tgt_seq_len, batch_size, vocab_size)

```

### Example Pipeline

1. **Speech Input**: Provide raw speech data or features extracted via an MFCC filter.
2. **Vision Input**: Use images or frame snapshots from video.
3. **Video Input**: Feed the network with video sequences.
4. **Text Output**: The model will generate a text output based on the combined multimodal input.

### Running the Example

To test CogNetX with some example data, run:

```bash
python example.py
```

## Code Structure

- `cognetx/`: Contains the core neural network classes.
    - `model`: The entire model model architecture.
- `example.py`: Example script to test the architecture with dummy data.

## Future Work
- Add support for additional modalities such as EEG signals or tactile data.
- Optimize the model for real-time performance across edge devices.
- Implement transfer learning and fine-tuning on various datasets.

## Contributing
Contributions are welcome! Please submit a pull request or open an issue if you want to suggest an improvement.

### Steps to Contribute
1. Fork the repository
2. Create a feature branch (`git checkout -b feature/awesome-feature`)
3. Commit your changes (`git commit -am 'Add awesome feature'`)
4. Push to the branch (`git push origin feature/awesome-feature`)
5. Open a pull request

## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/CogNetX",
    "name": "cognetx",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/1c/da/af7fd4976899cfeeed3620c699732e37ac18c3b58ef3b08bcc7b9c08cdc0/cognetx-0.0.1.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)\n\n# CogNetX\n\n[![Join our Discord](https://img.shields.io/badge/Discord-Join%20our%20server-5865F2?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/agora-999382051935506503) [![Subscribe on YouTube](https://img.shields.io/badge/YouTube-Subscribe-red?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@kyegomez3242) [![Connect on LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/kye-g-38759a207/) [![Follow on X.com](https://img.shields.io/badge/X.com-Follow-1DA1F2?style=for-the-badge&logo=x&logoColor=white)](https://x.com/kyegomezb)\n\n\n\nCogNetX is an advanced, multimodal neural network architecture inspired by human cognition. It integrates speech, vision, and video processing into one unified framework. Built with PyTorch, CogNetX leverages cutting-edge neural networks such as Transformers, Conformers, and CNNs to handle complex multimodal tasks. The architecture is designed to process inputs like speech, images, and video, and output coherent, human-like text.\n\n## Key Features\n- **Speech Processing**: Uses a Conformer network to handle speech inputs with extreme efficiency and accuracy.\n- **Vision Processing**: Employs a ResNet-based Convolutional Neural Network (CNN) for robust image understanding.\n- **Video Processing**: Utilizes a 3D CNN architecture for real-time video analysis and feature extraction.\n- **Text Generation**: Integrates a Transformer model to process and generate human-readable text, combining the features from speech, vision, and video.\n- **Multimodal Fusion**: Combines multiple input streams into a unified architecture, mimicking how humans process various types of sensory information.\n\n## Architecture Overview\n\nCogNetX brings together several cutting-edge neural networks:\n- **Conformer** for high-quality speech recognition.\n- **Transformer** for text generation and processing.\n- **ResNet** for vision and image recognition tasks.\n- **3D CNN** for video stream processing.\n\nThe architecture is designed to be highly modular, allowing easy extension and integration of additional modalities.\n\n### Neural Networks Used\n- **Speech**: [Conformer](https://arxiv.org/abs/2005.08100)\n- **Vision**: [ResNet50](https://arxiv.org/abs/1512.03385)\n- **Video**: [3D CNN (R3D-18)](https://arxiv.org/abs/1711.11248)\n- **Text**: [Transformer](https://arxiv.org/abs/1706.03762)\n\n## Installation\n\nTo set up and use CogNetX, first clone the repository:\n\n```bash\ngit clone https://github.com/kyegomez/CogNetX\ncd CogNetX\npip install -r requirements.txt\n```\n\n### Requirements\n- Python 3.8+\n- PyTorch 1.10+\n- Torchvision\n- Torchaudio\n\nInstall the required packages with:\n\n```bash\npip install torch torchvision torchaudio\n```\n\n## Usage\n\n### Model Architecture\n\n```python\nimport torch\nfrom cognetx.model import CogNetX\n\nif __name__ == \"__main__\":\n    # Example configuration and usage\n    config = {\n        \"speech_input_dim\": 80,  # For example, 80 Mel-filterbank features\n        \"speech_num_layers\": 4,\n        \"speech_num_heads\": 8,\n        \"encoder_dim\": 256,\n        \"decoder_dim\": 512,\n        \"vocab_size\": 10000,\n        \"embedding_dim\": 512,\n        \"decoder_num_layers\": 6,\n        \"decoder_num_heads\": 8,\n        \"dropout\": 0.1,\n        \"depthwise_conv_kernel_size\": 31,\n    }\n\n    model = CogNetX(config)\n\n    # Dummy inputs\n    batch_size = 2\n    speech_input = torch.randn(\n        batch_size, 500, config[\"speech_input_dim\"]\n    )  # (batch_size, time_steps, feature_dim)\n    vision_input = torch.randn(\n        batch_size, 3, 224, 224\n    )  # (batch_size, 3, H, W)\n    video_input = torch.randn(\n        batch_size, 3, 16, 112, 112\n    )  # (batch_size, 3, time_steps, H, W)\n    tgt_input = torch.randint(\n        0, config[\"vocab_size\"], (20, batch_size)\n    )  # (tgt_seq_len, batch_size)\n\n    # Forward pass\n    output = model(speech_input, vision_input, video_input, tgt_input)\n    print(\n        output.shape\n    )  # Expected: (tgt_seq_len, batch_size, vocab_size)\n\n```\n\n### Example Pipeline\n\n1. **Speech Input**: Provide raw speech data or features extracted via an MFCC filter.\n2. **Vision Input**: Use images or frame snapshots from video.\n3. **Video Input**: Feed the network with video sequences.\n4. **Text Output**: The model will generate a text output based on the combined multimodal input.\n\n### Running the Example\n\nTo test CogNetX with some example data, run:\n\n```bash\npython example.py\n```\n\n## Code Structure\n\n- `cognetx/`: Contains the core neural network classes.\n    - `model`: The entire model model architecture.\n- `example.py`: Example script to test the architecture with dummy data.\n\n## Future Work\n- Add support for additional modalities such as EEG signals or tactile data.\n- Optimize the model for real-time performance across edge devices.\n- Implement transfer learning and fine-tuning on various datasets.\n\n## Contributing\nContributions are welcome! Please submit a pull request or open an issue if you want to suggest an improvement.\n\n### Steps to Contribute\n1. Fork the repository\n2. Create a feature branch (`git checkout -b feature/awesome-feature`)\n3. Commit your changes (`git commit -am 'Add awesome feature'`)\n4. Push to the branch (`git push origin feature/awesome-feature`)\n5. Open a pull request\n\n## License\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "cognetx - Pytorch",
    "version": "0.0.1",
    "project_urls": {
        "Documentation": "https://github.com/kyegomez/CogNetX",
        "Homepage": "https://github.com/kyegomez/CogNetX",
        "Repository": "https://github.com/kyegomez/CogNetX"
    },
    "split_keywords": [
        "artificial intelligence",
        " deep learning",
        " optimizers",
        " prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "03ed9963f539c1408dce4f9886c2825407c117d90cdf19459eeb295c65006c31",
                "md5": "3f4c8c434ea89b42db26cc8bff9de34b",
                "sha256": "cc5fa0f2148fe84a891847f3cd17c5893d7e36c0690ddff8925e49abbe716ebb"
            },
            "downloads": -1,
            "filename": "cognetx-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3f4c8c434ea89b42db26cc8bff9de34b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 6619,
            "upload_time": "2024-09-21T01:33:55",
            "upload_time_iso_8601": "2024-09-21T01:33:55.027077Z",
            "url": "https://files.pythonhosted.org/packages/03/ed/9963f539c1408dce4f9886c2825407c117d90cdf19459eeb295c65006c31/cognetx-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1cdaaf7fd4976899cfeeed3620c699732e37ac18c3b58ef3b08bcc7b9c08cdc0",
                "md5": "b37f59130bc4128b0e661da35d43c710",
                "sha256": "c005e9ed35ddcfe7e514b6c174d171812cc75932ce379c96aa4a9085f3c959b9"
            },
            "downloads": -1,
            "filename": "cognetx-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "b37f59130bc4128b0e661da35d43c710",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 6359,
            "upload_time": "2024-09-21T01:33:56",
            "upload_time_iso_8601": "2024-09-21T01:33:56.815163Z",
            "url": "https://files.pythonhosted.org/packages/1c/da/af7fd4976899cfeeed3620c699732e37ac18c3b58ef3b08bcc7b9c08cdc0/cognetx-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-21 01:33:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "CogNetX",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "zetascale",
            "specs": []
        },
        {
            "name": "swarms",
            "specs": []
        }
    ],
    "lcname": "cognetx"
}
        
Elapsed time: 0.35173s