cognitivefactory-interactive-clustering


Namecognitivefactory-interactive-clustering JSON
Version 1.0.0 PyPI version JSON
download
home_page
SummaryPython package used to apply NLP interactive clustering methods.
upload_time2023-11-16 15:38:03
maintainer
docs_urlNone
author
requires_python>=3.8
licenseCECILL-C
keywords python natural-language-processing clustering constraints constrained-clustering-algorithm interactive-clustering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Interactive Clustering

[![ci](https://github.com/cognitivefactory/interactive-clustering/workflows/ci/badge.svg)](https://github.com/cognitivefactory/interactive-clustering/actions?query=workflow%3Aci)
[![documentation](https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?style=flat)](https://cognitivefactory.github.io/interactive-clustering/)
[![pypi version](https://img.shields.io/pypi/v/cognitivefactory-interactive-clustering.svg)](https://pypi.org/project/cognitivefactory-interactive-clustering/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4775251.svg)](https://doi.org/10.5281/zenodo.4775251)

Python package used to apply NLP interactive clustering methods.


## <a name="Description"></a> Quick description

_Interactive clustering_ is a method intended to assist in the design of a training data set.

This iterative process begins with an unlabeled dataset, and it uses a sequence of two substeps :

1. the user defines constraints on data sampled by the computer ;

2. the computer performs data partitioning using a constrained clustering algorithm.

Thus, at each step of the process :

- the user corrects the clustering of the previous steps using constraints, and

- the computer offers a corrected and more relevant data partitioning for the next step.

The process use severals objects :

- a _constraints manager_ : its role is to manage the constraints annotated by the user and to feed back the information deduced (such as the transitivity between constraints or the situation of inconsistency) ;

- a _constraints sampler_ : its role is to select the most relevant data during the annotation of constraints by the user ;

- a _constrained clustering algorithm_ : its role is to partition the data while respecting the constraints provided by the user.

_NB_ :

- This python library does not contain integration into a graphic interface.

- For more details, read the [Documentation](#Documentation) and the articles in the [References](#References) section.


## <a name="Documentation"></a> Documentation

- [Main documentation](https://cognitivefactory.github.io/interactive-clustering/)


## <a name="Installation"></a> Installation

Interactive Clustering requires Python 3.8 or above.

To install with [`pip`](https://github.com/pypa/pip):

```bash
# install package
python3 -m pip install cognitivefactory-interactive-clustering

# install spacy language model dependencies (the one you want, with version "3.4.x")
python3 -m spacy download fr_core_news_md-3.4.0 --direct
```

To install with [`pipx`](https://github.com/pypa/pipx):

```bash
# install pipx
python3 -m pip install --user pipx

# install package
pipx install --python python3 cognitivefactory-interactive-clustering

# install spacy language model dependencies (the one you want, with version "3.4.x")
python3 -m spacy download fr_core_news_md-3.4.0 --direct
```

_NB_ : Other spaCy language models can be downloaded here : [spaCy - Models & Languages](https://spacy.io/usage/models). Use spacy version `"3.4.x"`.


## <a name="Development"></a> Development

To work on this project or contribute to it, please read:

- the [Copier PDM](https://pawamoy.github.io/copier-pdm/) template documentation ;
- the [Contributing](https://cognitivefactory.github.io/interactive-clustering/contributing/) page for environment setup and development help ;
- the [Code of Conduct](https://cognitivefactory.github.io/interactive-clustering/code_of_conduct/) page for contribution rules.


## <a name="References"></a> References

- **Interactive Clustering**:
	- PhD report: `Schild, E. (2024, in press). De l'Importance de Valoriser l'Expertise Humaine dans l'Annotation : Application à la Modélisation de Textes en Intentions à l'aide d'un Clustering Interactif. Université de Lorraine.` ;
	- First presentation: `Schild, E., Durantin, G., Lamirel, J.C., & Miconi, F. (2021). Conception itérative et semi-supervisée d'assistants conversationnels par regroupement interactif des questions. In EGC 2021 - 21èmes Journées Francophones Extraction et Gestion des Connaissances. Edition RNTI. <hal-03133007>.`
	- Theoretical study: `Schild, E., Durantin, G., Lamirel, J., & Miconi, F. (2022). Iterative and Semi-Supervised Design of Chatbots Using Interactive Clustering. International Journal of Data Warehousing and Mining (IJDWM), 18(2), 1-19. http://doi.org/10.4018/IJDWM.298007. <hal-03648041>.`
	- Methodological discussion: `Schild, E., Durantin, G., & Lamirel, J.C. (2021). Concevoir un assistant conversationnel de manière itérative et semi-supervisée avec le clustering interactif. In Atelier - Fouille de Textes - Text Mine 2021 - En conjonction avec EGC 2021. <hal-03133060>.`

- **Constraints and Constrained Clustering**:
	- Constraints in clustering: `Wagstaff, K. et C. Cardie (2000). Clustering with Instance-level Constraints. Proceedings of the Seventeenth International Conference on Machine Learning, 1103–1110.`
	- Survey on Constrained Clustering: `Lampert, T., T.-B.-H. Dao, B. Lafabregue, N. Serrette, G. Forestier, B. Cremilleux, C. Vrain, et P. Gancarski (2018). Constrained distance based clustering for time-series : a comparative and experimental study. Data Mining and Knowledge Discovery 32(6), 1663–1707.`
	- Affinity Propagation:
		- Affinity Propagation Clustering: `Frey, B. J., & Dueck, D. (2007). Clustering by Passing Messages Between Data Points. In Science (Vol. 315, Issue 5814, pp. 972–976). American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/science.1136800`
		- Constrained Affinity Propagation Clustering: `Givoni, I., & Frey, B. J. (2009). Semi-Supervised Affinity Propagation with Instance-Level Constraints. Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, PMLR 5:161-168`
	- DBScan:
		- DBScan Clustering: `Ester, Martin & Kröger, Peer & Sander, Joerg & Xu, Xiaowei. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. KDD. 96. 226-231`.
		- Constrained DBScan Clustering: `Ruiz, Carlos & Spiliopoulou, Myra & Menasalvas, Ernestina. (2007). C-DBSCAN: Density-Based Clustering with Constraints. 216-223. 10.1007/978-3-540-72530-5_25.`
	- KMeans Clustering:
		- KMeans Clustering: `MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability 1(14), 281–297.`
		- Constrained _'COP'_ KMeans Clustering: `Wagstaff, K., C. Cardie, S. Rogers, et S. Schroedl (2001). Constrained K-means Clustering with Background Knowledge. International Conference on Machine Learning`
		- Constrained _'MPC'_ KMeans Clustering: `Khan, Md. A., Tamim, I., Ahmed, E., & Awal, M. A. (2012). Multiple Parameter Based Clustering (MPC): Prospective Analysis for Effective Clustering in Wireless Sensor Network (WSN) Using K-Means Algorithm. In Wireless Sensor Network (Vol. 04, Issue 01, pp. 18–24). Scientific Research Publishing, Inc. https://doi.org/10.4236/wsn.2012.41003`
	- Hierarchical Clustering:
		- Hierarchical Clustering: `Murtagh, F. et P. Contreras (2012). Algorithms for hierarchical clustering : An overview. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 2, 86–97.`
		- Constrained Hierarchical Clustering: `Davidson, I. et S. S. Ravi (2005). Agglomerative Hierarchical Clustering with Constraints : Theoretical and Empirical Results. Springer, Berlin, Heidelberg 3721, 12.`
	- Spectral Clustering:
		- Spectral Clustering: `Ng, A. Y., M. I. Jordan, et Y.Weiss (2002). On Spectral Clustering: Analysis and an algorithm. In T. G. Dietterich, S. Becker, et Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14. MIT Press.`
		- Constrained _'SPEC'_ Spectral Clustering: `Kamvar, S. D., D. Klein, et C. D. Manning (2003). Spectral Learning. Proceedings of the international joint conference on artificial intelligence, 561–566.`

- **Preprocessing and Vectorization**:
	- _spaCy_: `Honnibal, M. et I. Montani (2017). spaCy 2 : Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing.`
		- _spaCy_ language models: `https://spacy.io/usage/models`
	- _NLTK_: `Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language Processing with Python. O’Reilly Media Inc.`
		- _NLTK_ _'SnowballStemmer'_: `https://www.nltk.org/api/nltk.stem.html#module-nltk.stem.snowball`
	- _Scikit-learn_: `Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, et E. Duchesnay (2011). Scikit-learn : Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830.`
		- _Scikit-learn_ _'TfidfVectorizer'_: `https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html`


## <a name="Other links"></a> Other links

- Several comparative studies of Interactive Clustering methodology on NLP datasets: `Schild, E. (2021). cognitivefactory/interactive-clustering-comparative-study. Zenodo. https://doi.org/10.5281/zenodo.5648255`
- A web application designed for NLP data annotation using Interactive Clustering methodology: `Schild, E. (2021). cognitivefactory/interactive-clustering-gui. Zenodo. https://doi.org/10.5281/zenodo.4775270`


## <a name="How to cite"></a> How to cite

`Schild, E. (2021). cognitivefactory/interactive-clustering. Zenodo. https://doi.org/10.5281/zenodo.4775251.`


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "cognitivefactory-interactive-clustering",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "python,natural-language-processing,clustering,constraints,constrained-clustering-algorithm,interactive-clustering",
    "author": "",
    "author_email": "Erwan Schild <erwan.schild@e-i.com>",
    "download_url": "https://files.pythonhosted.org/packages/1b/61/5098ac346370a1cfed3e204d8d902ddae4ef0ee1b6c964bbe2fee415f48a/cognitivefactory-interactive-clustering-1.0.0.tar.gz",
    "platform": null,
    "description": "# Interactive Clustering\n\n[![ci](https://github.com/cognitivefactory/interactive-clustering/workflows/ci/badge.svg)](https://github.com/cognitivefactory/interactive-clustering/actions?query=workflow%3Aci)\n[![documentation](https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?style=flat)](https://cognitivefactory.github.io/interactive-clustering/)\n[![pypi version](https://img.shields.io/pypi/v/cognitivefactory-interactive-clustering.svg)](https://pypi.org/project/cognitivefactory-interactive-clustering/)\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4775251.svg)](https://doi.org/10.5281/zenodo.4775251)\n\nPython package used to apply NLP interactive clustering methods.\n\n\n## <a name=\"Description\"></a> Quick description\n\n_Interactive clustering_ is a method intended to assist in the design of a training data set.\n\nThis iterative process begins with an unlabeled dataset, and it uses a sequence of two substeps :\n\n1. the user defines constraints on data sampled by the computer ;\n\n2. the computer performs data partitioning using a constrained clustering algorithm.\n\nThus, at each step of the process :\n\n- the user corrects the clustering of the previous steps using constraints, and\n\n- the computer offers a corrected and more relevant data partitioning for the next step.\n\nThe process use severals objects :\n\n- a _constraints manager_ : its role is to manage the constraints annotated by the user and to feed back the information deduced (such as the transitivity between constraints or the situation of inconsistency) ;\n\n- a _constraints sampler_ : its role is to select the most relevant data during the annotation of constraints by the user ;\n\n- a _constrained clustering algorithm_ : its role is to partition the data while respecting the constraints provided by the user.\n\n_NB_ :\n\n- This python library does not contain integration into a graphic interface.\n\n- For more details, read the [Documentation](#Documentation) and the articles in the [References](#References) section.\n\n\n## <a name=\"Documentation\"></a> Documentation\n\n- [Main documentation](https://cognitivefactory.github.io/interactive-clustering/)\n\n\n## <a name=\"Installation\"></a> Installation\n\nInteractive Clustering requires Python 3.8 or above.\n\nTo install with [`pip`](https://github.com/pypa/pip):\n\n```bash\n# install package\npython3 -m pip install cognitivefactory-interactive-clustering\n\n# install spacy language model dependencies (the one you want, with version \"3.4.x\")\npython3 -m spacy download fr_core_news_md-3.4.0 --direct\n```\n\nTo install with [`pipx`](https://github.com/pypa/pipx):\n\n```bash\n# install pipx\npython3 -m pip install --user pipx\n\n# install package\npipx install --python python3 cognitivefactory-interactive-clustering\n\n# install spacy language model dependencies (the one you want, with version \"3.4.x\")\npython3 -m spacy download fr_core_news_md-3.4.0 --direct\n```\n\n_NB_ : Other spaCy language models can be downloaded here : [spaCy - Models & Languages](https://spacy.io/usage/models). Use spacy version `\"3.4.x\"`.\n\n\n## <a name=\"Development\"></a> Development\n\nTo work on this project or contribute to it, please read:\n\n- the [Copier PDM](https://pawamoy.github.io/copier-pdm/) template documentation ;\n- the [Contributing](https://cognitivefactory.github.io/interactive-clustering/contributing/) page for environment setup and development help ;\n- the [Code of Conduct](https://cognitivefactory.github.io/interactive-clustering/code_of_conduct/) page for contribution rules.\n\n\n## <a name=\"References\"></a> References\n\n- **Interactive Clustering**:\n\t- PhD report: `Schild, E. (2024, in press). De l'Importance de Valoriser l'Expertise Humaine dans l'Annotation : Application \u00e0 la Mod\u00e9lisation de Textes en Intentions \u00e0 l'aide d'un Clustering Interactif. Universit\u00e9 de Lorraine.` ;\n\t- First presentation: `Schild, E., Durantin, G., Lamirel, J.C., & Miconi, F. (2021). Conception it\u00e9rative et semi-supervis\u00e9e d'assistants conversationnels par regroupement interactif des questions. In EGC 2021 - 21\u00e8mes Journ\u00e9es Francophones Extraction et Gestion des Connaissances. Edition RNTI. <hal-03133007>.`\n\t- Theoretical study: `Schild, E., Durantin, G., Lamirel, J., & Miconi, F. (2022). Iterative and Semi-Supervised Design of Chatbots Using Interactive Clustering. International Journal of Data Warehousing and Mining (IJDWM), 18(2), 1-19. http://doi.org/10.4018/IJDWM.298007. <hal-03648041>.`\n\t- Methodological discussion: `Schild, E., Durantin, G., & Lamirel, J.C. (2021). Concevoir un assistant conversationnel de mani\u00e8re it\u00e9rative et semi-supervis\u00e9e avec le clustering interactif. In Atelier - Fouille de Textes - Text Mine 2021 - En conjonction avec EGC 2021. <hal-03133060>.`\n\n- **Constraints and Constrained Clustering**:\n\t- Constraints in clustering: `Wagstaff, K. et C. Cardie (2000). Clustering with Instance-level Constraints. Proceedings of the Seventeenth International Conference on Machine Learning, 1103\u20131110.`\n\t- Survey on Constrained Clustering: `Lampert, T., T.-B.-H. Dao, B. Lafabregue, N. Serrette, G. Forestier, B. Cremilleux, C. Vrain, et P. Gancarski (2018). Constrained distance based clustering for time-series : a comparative and experimental study. Data Mining and Knowledge Discovery 32(6), 1663\u20131707.`\n\t- Affinity Propagation:\n\t\t- Affinity Propagation Clustering: `Frey, B. J., & Dueck, D. (2007). Clustering by Passing Messages Between Data Points. In Science (Vol. 315, Issue 5814, pp. 972\u2013976). American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/science.1136800`\n\t\t- Constrained Affinity Propagation Clustering: `Givoni, I., & Frey, B. J. (2009). Semi-Supervised Affinity Propagation with Instance-Level Constraints. Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, PMLR 5:161-168`\n\t- DBScan:\n\t\t- DBScan Clustering: `Ester, Martin & Kr\u00f6ger, Peer & Sander, Joerg & Xu, Xiaowei. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. KDD. 96. 226-231`.\n\t\t- Constrained DBScan Clustering: `Ruiz, Carlos & Spiliopoulou, Myra & Menasalvas, Ernestina. (2007). C-DBSCAN: Density-Based Clustering with Constraints. 216-223. 10.1007/978-3-540-72530-5_25.`\n\t- KMeans Clustering:\n\t\t- KMeans Clustering: `MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability 1(14), 281\u2013297.`\n\t\t- Constrained _'COP'_ KMeans Clustering: `Wagstaff, K., C. Cardie, S. Rogers, et S. Schroedl (2001). Constrained K-means Clustering with Background Knowledge. International Conference on Machine Learning`\n\t\t- Constrained _'MPC'_ KMeans Clustering: `Khan, Md. A., Tamim, I., Ahmed, E., & Awal, M. A. (2012). Multiple Parameter Based Clustering (MPC): Prospective Analysis for Effective Clustering in Wireless Sensor Network (WSN) Using K-Means Algorithm. In Wireless Sensor Network (Vol. 04, Issue 01, pp. 18\u201324). Scientific Research Publishing, Inc. https://doi.org/10.4236/wsn.2012.41003`\n\t- Hierarchical Clustering:\n\t\t- Hierarchical Clustering: `Murtagh, F. et P. Contreras (2012). Algorithms for hierarchical clustering : An overview. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 2, 86\u201397.`\n\t\t- Constrained Hierarchical Clustering: `Davidson, I. et S. S. Ravi (2005). Agglomerative Hierarchical Clustering with Constraints : Theoretical and Empirical Results. Springer, Berlin, Heidelberg 3721, 12.`\n\t- Spectral Clustering:\n\t\t- Spectral Clustering: `Ng, A. Y., M. I. Jordan, et Y.Weiss (2002). On Spectral Clustering: Analysis and an algorithm. In T. G. Dietterich, S. Becker, et Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14. MIT Press.`\n\t\t- Constrained _'SPEC'_ Spectral Clustering: `Kamvar, S. D., D. Klein, et C. D. Manning (2003). Spectral Learning. Proceedings of the international joint conference on artificial intelligence, 561\u2013566.`\n\n- **Preprocessing and Vectorization**:\n\t- _spaCy_: `Honnibal, M. et I. Montani (2017). spaCy 2 : Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing.`\n\t\t- _spaCy_ language models: `https://spacy.io/usage/models`\n\t- _NLTK_: `Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language Processing with Python. O\u2019Reilly Media Inc.`\n\t\t- _NLTK_ _'SnowballStemmer'_: `https://www.nltk.org/api/nltk.stem.html#module-nltk.stem.snowball`\n\t- _Scikit-learn_: `Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, et E. Duchesnay (2011). Scikit-learn : Machine Learning in Python. Journal of Machine Learning Research 12, 2825\u20132830.`\n\t\t- _Scikit-learn_ _'TfidfVectorizer'_: `https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html`\n\n\n## <a name=\"Other links\"></a> Other links\n\n- Several comparative studies of Interactive Clustering methodology on NLP datasets: `Schild, E. (2021). cognitivefactory/interactive-clustering-comparative-study. Zenodo. https://doi.org/10.5281/zenodo.5648255`\n- A web application designed for NLP data annotation using Interactive Clustering methodology: `Schild, E. (2021). cognitivefactory/interactive-clustering-gui. Zenodo. https://doi.org/10.5281/zenodo.4775270`\n\n\n## <a name=\"How to cite\"></a> How to cite\n\n`Schild, E. (2021). cognitivefactory/interactive-clustering. Zenodo. https://doi.org/10.5281/zenodo.4775251.`\n\n",
    "bugtrack_url": null,
    "license": "CECILL-C",
    "summary": "Python package used to apply NLP interactive clustering methods.",
    "version": "1.0.0",
    "project_urls": {
        "Changelog": "https://cognitivefactory.github.io/interactive-clustering/changelog",
        "Discussions": "https://github.com/cognitivefactory/interactive-clustering/discussions",
        "Documentation": "https://cognitivefactory.github.io/interactive-clustering",
        "Homepage": "https://cognitivefactory.github.io/interactive-clustering",
        "Issues": "https://github.com/cognitivefactory/interactive-clustering/issues",
        "Repository": "https://github.com/cognitivefactory/interactive-clustering"
    },
    "split_keywords": [
        "python",
        "natural-language-processing",
        "clustering",
        "constraints",
        "constrained-clustering-algorithm",
        "interactive-clustering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "05efe54c749c88cfd439d1c5950c7e3658a0bba571efdb7b3c874ca7cccc8b54",
                "md5": "a3374978259b2dd35638b4c1c370f74e",
                "sha256": "0915041a4f5eff6918a406e2615ff8e65948cda2cdfbd2142e9b84d9d577a2af"
            },
            "downloads": -1,
            "filename": "cognitivefactory_interactive_clustering-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a3374978259b2dd35638b4c1c370f74e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 75413,
            "upload_time": "2023-11-16T15:38:01",
            "upload_time_iso_8601": "2023-11-16T15:38:01.193704Z",
            "url": "https://files.pythonhosted.org/packages/05/ef/e54c749c88cfd439d1c5950c7e3658a0bba571efdb7b3c874ca7cccc8b54/cognitivefactory_interactive_clustering-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1b615098ac346370a1cfed3e204d8d902ddae4ef0ee1b6c964bbe2fee415f48a",
                "md5": "d9c1a2badc028da8ed8f528ba940e6a0",
                "sha256": "75f2bf6d7ffd9f06f2081d7616ecd1d62247245462ffeb03a0299aa92a31bc06"
            },
            "downloads": -1,
            "filename": "cognitivefactory-interactive-clustering-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "d9c1a2badc028da8ed8f528ba940e6a0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 91409,
            "upload_time": "2023-11-16T15:38:03",
            "upload_time_iso_8601": "2023-11-16T15:38:03.650626Z",
            "url": "https://files.pythonhosted.org/packages/1b/61/5098ac346370a1cfed3e204d8d902ddae4ef0ee1b6c964bbe2fee415f48a/cognitivefactory-interactive-clustering-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-16 15:38:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cognitivefactory",
    "github_project": "interactive-clustering",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "cognitivefactory-interactive-clustering"
}
        
Elapsed time: 0.16631s