coin-test


Namecoin-test JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/coin-test/coin-test
SummaryRobust and rigorous backtesting framework for cryptocurrencies.
upload_time2023-03-22 19:28:11
maintainer
docs_urlNone
authorEamon Ito-Fisher
requires_python>=3.10,<3.11
licenseMIT
keywords cryptocurrency backtesting
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # coin-test

[![Tests](https://github.com/coin-test/coin-test/workflows/Tests/badge.svg)](https://github.com/coin-test/coin-test/actions?workflow=Tests)
[![Codecov](https://codecov.io/gh/coin-test/coin-test/branch/main/graph/badge.svg)](https://codecov.io/gh/coin-test/coin-test)

Coin-test is a backtesting library designed for cryptocurrency trading. It supports trading strategies across multiple currencies and advanced configurations of tests, including cron-based scheduled execution of strategies, synthetic data generation, slippage modeling, and trading fees.

## Quick Start

Coin-test runs on Python 3.10 or higher. Install the package via pip:

```sh
pip3 install coin-test
```

To run a backtest, import the coin-test library. Then define your data source, strategy, and test settings to run the analysis.

```python
import datetime as dt
import os
import pandas as pd

from coin_test.backtest import Portfolio, Strategy, MarketTradeRequest
from coin_test.data import CustomDataset
from coin_test.util import AssetPair, Ticker, Money, Side
```
Then, import data from a CSV or another source to load
into the backtest.
```python
dataset_file = "data/ETHUSDT-1h-monthly/BTCUSDT-1h-2017-08.csv"
header = ["Open Time", "Open", "High", "Low", "Close", "Volume", "Close Time",
    "Quote asset volume", "Number of trades", "Taker buy base asset volume",
    "Taker buy quote asset volume", "Ignore"
]
df = pd.read_csv(dataset_file, names=header)
df = df.drop(columns=["Close Time", "Quote asset volume", "Number of trades",
                      "Taker buy base asset volume",
                      "Taker buy quote asset volume", "Ignore"])
df["Open Time"] //= 1000  # To seconds
df = df.sort_values(by=["Open Time"])

# define dataset metadata
usdt = Ticker("USDT")
btc = Ticker("BTC")
asset_pair = AssetPair(btc, usdt)
freq = "H"

dataset = CustomDataset(df, freq, asset_pair)
```

Strategies are stored in classes as shown below. Each strategy
should have a schedule, which is a cron string representing
when this strategy is run, a lookback, which is how much
data is accessed in the strategy, and a `__call__` method
which returns a list of TradeRequest objects, which represent
trades the strategy wants to make.

```python
class MACD(Strategy):
    def __init__(self, asset_pair) -> None:
        """Initialize a MACD object."""
        super().__init__(
            name="MACD",
            asset_pairs=[asset_pair],
            schedule="0 9 * * *",
            lookback=dt.timedelta(days=26),
        )
        self.perc = 0.2

    def __call__(self, time, portfolio, lookback_data):
        """Execute test strategy."""
        asset_pair = self.asset_pairs[0]
        exp1 = lookback_data[asset_pair]["Close"].ewm(span=12 * 24, adjust=False).mean()
        exp2 = lookback_data[asset_pair]["Close"].ewm(span=26 * 24, adjust=False).mean()
        macd = exp1 - exp2
        exp3 = macd.ewm(span=9 * 24, adjust=False).mean()

        if macd.iloc[-1] > exp3.iloc[-1]:
            return [MarketTradeRequest(
                asset_pair,
                Side.BUY,
                notional=portfolio.available_assets(usdt).qty * self.perc,
            )]
        elif macd.iloc[-1] < exp3.iloc[-1]:
            return [MarketTradeRequest(
                asset_pair,
                Side.SELL,
                qty=portfolio.available_assets(btc).qty * self.perc,
            )]
        return []
```

This package supports multiple strategies, train-test splits
for historical data, synthetic data, and further customization.
To run the backtest, define the datasets

```python
from coin_test.backtest import ConstantSlippage, ConstantTransactionFeeCalculator
sc = ConstantSlippage(50)
tc = ConstantTransactionFeeCalculator(50)

datasets = [dataset]
strategies = [MACD]

results = coin_test.run(datasets, strategies, sc, tc,
                        portfolio, pd.Timedelta(days=90),
                        n_parallel=8)
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/coin-test/coin-test",
    "name": "coin-test",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10,<3.11",
    "maintainer_email": "",
    "keywords": "cryptocurrency,backtesting",
    "author": "Eamon Ito-Fisher",
    "author_email": "eamon@itofisher.com",
    "download_url": "https://files.pythonhosted.org/packages/00/87/244bfa811303a6d2329c3f64760840d1d7e2476c976b2755598ffb766e88/coin_test-0.1.0.tar.gz",
    "platform": null,
    "description": "# coin-test\n\n[![Tests](https://github.com/coin-test/coin-test/workflows/Tests/badge.svg)](https://github.com/coin-test/coin-test/actions?workflow=Tests)\n[![Codecov](https://codecov.io/gh/coin-test/coin-test/branch/main/graph/badge.svg)](https://codecov.io/gh/coin-test/coin-test)\n\nCoin-test is a backtesting library designed for cryptocurrency trading. It supports trading strategies across multiple currencies and advanced configurations of tests, including cron-based scheduled execution of strategies, synthetic data generation, slippage modeling, and trading fees.\n\n## Quick Start\n\nCoin-test runs on Python 3.10 or higher. Install the package via pip:\n\n```sh\npip3 install coin-test\n```\n\nTo run a backtest, import the coin-test library. Then define your data source, strategy, and test settings to run the analysis.\n\n```python\nimport datetime as dt\nimport os\nimport pandas as pd\n\nfrom coin_test.backtest import Portfolio, Strategy, MarketTradeRequest\nfrom coin_test.data import CustomDataset\nfrom coin_test.util import AssetPair, Ticker, Money, Side\n```\nThen, import data from a CSV or another source to load\ninto the backtest.\n```python\ndataset_file = \"data/ETHUSDT-1h-monthly/BTCUSDT-1h-2017-08.csv\"\nheader = [\"Open Time\", \"Open\", \"High\", \"Low\", \"Close\", \"Volume\", \"Close Time\",\n    \"Quote asset volume\", \"Number of trades\", \"Taker buy base asset volume\",\n    \"Taker buy quote asset volume\", \"Ignore\"\n]\ndf = pd.read_csv(dataset_file, names=header)\ndf = df.drop(columns=[\"Close Time\", \"Quote asset volume\", \"Number of trades\",\n                      \"Taker buy base asset volume\",\n                      \"Taker buy quote asset volume\", \"Ignore\"])\ndf[\"Open Time\"] //= 1000  # To seconds\ndf = df.sort_values(by=[\"Open Time\"])\n\n# define dataset metadata\nusdt = Ticker(\"USDT\")\nbtc = Ticker(\"BTC\")\nasset_pair = AssetPair(btc, usdt)\nfreq = \"H\"\n\ndataset = CustomDataset(df, freq, asset_pair)\n```\n\nStrategies are stored in classes as shown below. Each strategy\nshould have a schedule, which is a cron string representing\nwhen this strategy is run, a lookback, which is how much\ndata is accessed in the strategy, and a `__call__` method\nwhich returns a list of TradeRequest objects, which represent\ntrades the strategy wants to make.\n\n```python\nclass MACD(Strategy):\n    def __init__(self, asset_pair) -> None:\n        \"\"\"Initialize a MACD object.\"\"\"\n        super().__init__(\n            name=\"MACD\",\n            asset_pairs=[asset_pair],\n            schedule=\"0 9 * * *\",\n            lookback=dt.timedelta(days=26),\n        )\n        self.perc = 0.2\n\n    def __call__(self, time, portfolio, lookback_data):\n        \"\"\"Execute test strategy.\"\"\"\n        asset_pair = self.asset_pairs[0]\n        exp1 = lookback_data[asset_pair][\"Close\"].ewm(span=12 * 24, adjust=False).mean()\n        exp2 = lookback_data[asset_pair][\"Close\"].ewm(span=26 * 24, adjust=False).mean()\n        macd = exp1 - exp2\n        exp3 = macd.ewm(span=9 * 24, adjust=False).mean()\n\n        if macd.iloc[-1] > exp3.iloc[-1]:\n            return [MarketTradeRequest(\n                asset_pair,\n                Side.BUY,\n                notional=portfolio.available_assets(usdt).qty * self.perc,\n            )]\n        elif macd.iloc[-1] < exp3.iloc[-1]:\n            return [MarketTradeRequest(\n                asset_pair,\n                Side.SELL,\n                qty=portfolio.available_assets(btc).qty * self.perc,\n            )]\n        return []\n```\n\nThis package supports multiple strategies, train-test splits\nfor historical data, synthetic data, and further customization.\nTo run the backtest, define the datasets\n\n```python\nfrom coin_test.backtest import ConstantSlippage, ConstantTransactionFeeCalculator\nsc = ConstantSlippage(50)\ntc = ConstantTransactionFeeCalculator(50)\n\ndatasets = [dataset]\nstrategies = [MACD]\n\nresults = coin_test.run(datasets, strategies, sc, tc,\n                        portfolio, pd.Timedelta(days=90),\n                        n_parallel=8)\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Robust and rigorous backtesting framework for cryptocurrencies.",
    "version": "0.1.0",
    "split_keywords": [
        "cryptocurrency",
        "backtesting"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "22da50d6740738e138718c27ec1ed9c8f256880dde01df72e916b920b2676e46",
                "md5": "7c87ab54ef13f43cb142f300f52734bc",
                "sha256": "2478b9e9434dc28382a6276d83cf7bcf928e76c2970e44f4c275e9d4f6cdbf08"
            },
            "downloads": -1,
            "filename": "coin_test-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7c87ab54ef13f43cb142f300f52734bc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10,<3.11",
            "size": 27540,
            "upload_time": "2023-03-22T19:28:10",
            "upload_time_iso_8601": "2023-03-22T19:28:10.635023Z",
            "url": "https://files.pythonhosted.org/packages/22/da/50d6740738e138718c27ec1ed9c8f256880dde01df72e916b920b2676e46/coin_test-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0087244bfa811303a6d2329c3f64760840d1d7e2476c976b2755598ffb766e88",
                "md5": "5a107cce2308fb9f3723fbeefc27cb10",
                "sha256": "8b8811e49d43ad0f53c04a8f3c6b63bc0c60fa7f48197da08ca24c063479e1e6"
            },
            "downloads": -1,
            "filename": "coin_test-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5a107cce2308fb9f3723fbeefc27cb10",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10,<3.11",
            "size": 22010,
            "upload_time": "2023-03-22T19:28:11",
            "upload_time_iso_8601": "2023-03-22T19:28:11.945609Z",
            "url": "https://files.pythonhosted.org/packages/00/87/244bfa811303a6d2329c3f64760840d1d7e2476c976b2755598ffb766e88/coin_test-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-22 19:28:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "coin-test",
    "github_project": "coin-test",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "coin-test"
}
        
Elapsed time: 0.20544s