colorspacious


Namecolorspacious JSON
Version 1.1.2 PyPI version JSON
download
home_pagehttps://github.com/njsmith/colorspacious
SummaryA powerful, accurate, and easy-to-use Python library for doing colorspace conversions
upload_time2018-04-08 04:27:30
maintainer
docs_urlNone
authorNathaniel J. Smith
requires_python
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            colorspacious
=============

.. image:: https://travis-ci.org/njsmith/colorspacious.svg?branch=master
   :target: https://travis-ci.org/njsmith/colorspacious
   :alt: Automated test status

.. image:: https://codecov.io/gh/njsmith/colorspacious/branch/master/graph/badge.svg
   :target: https://codecov.io/gh/njsmith/colorspacious
   :alt: Test coverage

.. image:: https://readthedocs.org/projects/colorspacious/badge/?version=latest
   :target: http://colorspacious.readthedocs.io/en/latest/?badge=latest
   :alt: Documentation Status

.. image:: https://zenodo.org/badge/38525000.svg
   :target: https://zenodo.org/badge/latestdoi/38525000

Colorspacious is a powerful, accurate, and easy-to-use library for
performing colorspace conversions.

In addition to the most common standard colorspaces (sRGB, XYZ, xyY,
CIELab, CIELCh), we also include: color vision deficiency ("color
blindness") simulations using the approach of Machado et al (2009); a
complete implementation of `CIECAM02
<https://en.wikipedia.org/wiki/CIECAM02>`_; and the perceptually
uniform CAM02-UCS / CAM02-LCD / CAM02-SCD spaces proposed by Luo et al
(2006).

To get started, simply write::

  from colorspacious import cspace_convert

  Jp, ap, bp = cspace_convert([64, 128, 255], "sRGB255", "CAM02-UCS")

This converts an sRGB value (represented as integers between 0-255) to
CAM02-UCS `J'a'b'` coordinates (assuming standard sRGB viewing
conditions by default). This requires passing through 4 intermediate
colorspaces; ``cspace_convert`` automatically finds the optimal route
and applies all conversions in sequence:

This function also of course accepts arbitrary NumPy arrays, so
converting a whole image is just as easy as converting a single value.

Documentation:
  http://colorspacious.readthedocs.org/

Installation:
  ``pip install colorspacious``

Downloads:
  https://pypi.python.org/pypi/colorspacious/

Code and bug tracker:
  https://github.com/njsmith/colorspacious

Contact:
  Nathaniel J. Smith <njs@pobox.com>

Dependencies:
  * Python 2.6+, or 3.3+
  * NumPy

Developer dependencies (only needed for hacking on source):
  * nose: needed to run tests

License:
  MIT, see LICENSE.txt for details.

References for algorithms we implement:
  * Luo, M. R., Cui, G., & Li, C. (2006). Uniform colour spaces based on
    CIECAM02 colour appearance model. Color Research & Application, 31(4),
    320–330. doi:10.1002/col.20227
  * Machado, G. M., Oliveira, M. M., & Fernandes, L. A. (2009). A
    physiologically-based model for simulation of color vision
    deficiency. Visualization and Computer Graphics, IEEE Transactions on,
    15(6), 1291–1298. http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html

Other Python packages with similar functionality that you might want
to check out as well or instead:

* ``colour``: http://colour-science.org/
* ``colormath``: http://python-colormath.readthedocs.org/
* ``ciecam02``: https://pypi.python.org/pypi/ciecam02/
* ``ColorPy``: http://markkness.net/colorpy/ColorPy.html



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/njsmith/colorspacious",
    "name": "colorspacious",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Nathaniel J. Smith",
    "author_email": "njs@pobox.com",
    "download_url": "https://files.pythonhosted.org/packages/75/e4/aa41ae14c5c061205715006c8834496d86ec7500f1edda5981f0f0190cc6/colorspacious-1.1.2.tar.gz",
    "platform": "",
    "description": "colorspacious\n=============\n\n.. image:: https://travis-ci.org/njsmith/colorspacious.svg?branch=master\n   :target: https://travis-ci.org/njsmith/colorspacious\n   :alt: Automated test status\n\n.. image:: https://codecov.io/gh/njsmith/colorspacious/branch/master/graph/badge.svg\n   :target: https://codecov.io/gh/njsmith/colorspacious\n   :alt: Test coverage\n\n.. image:: https://readthedocs.org/projects/colorspacious/badge/?version=latest\n   :target: http://colorspacious.readthedocs.io/en/latest/?badge=latest\n   :alt: Documentation Status\n\n.. image:: https://zenodo.org/badge/38525000.svg\n   :target: https://zenodo.org/badge/latestdoi/38525000\n\nColorspacious is a powerful, accurate, and easy-to-use library for\nperforming colorspace conversions.\n\nIn addition to the most common standard colorspaces (sRGB, XYZ, xyY,\nCIELab, CIELCh), we also include: color vision deficiency (\"color\nblindness\") simulations using the approach of Machado et al (2009); a\ncomplete implementation of `CIECAM02\n<https://en.wikipedia.org/wiki/CIECAM02>`_; and the perceptually\nuniform CAM02-UCS / CAM02-LCD / CAM02-SCD spaces proposed by Luo et al\n(2006).\n\nTo get started, simply write::\n\n  from colorspacious import cspace_convert\n\n  Jp, ap, bp = cspace_convert([64, 128, 255], \"sRGB255\", \"CAM02-UCS\")\n\nThis converts an sRGB value (represented as integers between 0-255) to\nCAM02-UCS `J'a'b'` coordinates (assuming standard sRGB viewing\nconditions by default). This requires passing through 4 intermediate\ncolorspaces; ``cspace_convert`` automatically finds the optimal route\nand applies all conversions in sequence:\n\nThis function also of course accepts arbitrary NumPy arrays, so\nconverting a whole image is just as easy as converting a single value.\n\nDocumentation:\n  http://colorspacious.readthedocs.org/\n\nInstallation:\n  ``pip install colorspacious``\n\nDownloads:\n  https://pypi.python.org/pypi/colorspacious/\n\nCode and bug tracker:\n  https://github.com/njsmith/colorspacious\n\nContact:\n  Nathaniel J. Smith <njs@pobox.com>\n\nDependencies:\n  * Python 2.6+, or 3.3+\n  * NumPy\n\nDeveloper dependencies (only needed for hacking on source):\n  * nose: needed to run tests\n\nLicense:\n  MIT, see LICENSE.txt for details.\n\nReferences for algorithms we implement:\n  * Luo, M. R., Cui, G., & Li, C. (2006). Uniform colour spaces based on\n    CIECAM02 colour appearance model. Color Research & Application, 31(4),\n    320\u2013330. doi:10.1002/col.20227\n  * Machado, G. M., Oliveira, M. M., & Fernandes, L. A. (2009). A\n    physiologically-based model for simulation of color vision\n    deficiency. Visualization and Computer Graphics, IEEE Transactions on,\n    15(6), 1291\u20131298. http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html\n\nOther Python packages with similar functionality that you might want\nto check out as well or instead:\n\n* ``colour``: http://colour-science.org/\n* ``colormath``: http://python-colormath.readthedocs.org/\n* ``ciecam02``: https://pypi.python.org/pypi/ciecam02/\n* ``ColorPy``: http://markkness.net/colorpy/ColorPy.html\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A powerful, accurate, and easy-to-use Python library for doing colorspace conversions",
    "version": "1.1.2",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "950cb853f03016cc311fa5f5d4e7447a",
                "sha256": "c78befa603cea5dccb332464e7dd29e96469eebf6cd5133029153d1e69e3fd6f"
            },
            "downloads": -1,
            "filename": "colorspacious-1.1.2-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "950cb853f03016cc311fa5f5d4e7447a",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 37735,
            "upload_time": "2018-04-08T04:27:22",
            "upload_time_iso_8601": "2018-04-08T04:27:22.143204Z",
            "url": "https://files.pythonhosted.org/packages/ab/a1/318b9aeca7b9856410ededa4f52d6f82174d1a41e64bdd70d951e532675a/colorspacious-1.1.2-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "2f457686bd0afb8b0816b68cd903b8f9",
                "sha256": "5e9072e8cdca889dac445c35c9362a22ccf758e97b00b79ff0d5a7ba3e11b618"
            },
            "downloads": -1,
            "filename": "colorspacious-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "2f457686bd0afb8b0816b68cd903b8f9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 688573,
            "upload_time": "2018-04-08T04:27:30",
            "upload_time_iso_8601": "2018-04-08T04:27:30.830546Z",
            "url": "https://files.pythonhosted.org/packages/75/e4/aa41ae14c5c061205715006c8834496d86ec7500f1edda5981f0f0190cc6/colorspacious-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2018-04-08 04:27:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "njsmith",
    "github_project": "colorspacious",
    "travis_ci": true,
    "coveralls": true,
    "github_actions": false,
    "lcname": "colorspacious"
}
        
Elapsed time: 0.05454s