colorspacious
=============
.. image:: https://travis-ci.org/njsmith/colorspacious.svg?branch=master
:target: https://travis-ci.org/njsmith/colorspacious
:alt: Automated test status
.. image:: https://codecov.io/gh/njsmith/colorspacious/branch/master/graph/badge.svg
:target: https://codecov.io/gh/njsmith/colorspacious
:alt: Test coverage
.. image:: https://readthedocs.org/projects/colorspacious/badge/?version=latest
:target: http://colorspacious.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://zenodo.org/badge/38525000.svg
:target: https://zenodo.org/badge/latestdoi/38525000
Colorspacious is a powerful, accurate, and easy-to-use library for
performing colorspace conversions.
In addition to the most common standard colorspaces (sRGB, XYZ, xyY,
CIELab, CIELCh), we also include: color vision deficiency ("color
blindness") simulations using the approach of Machado et al (2009); a
complete implementation of `CIECAM02
<https://en.wikipedia.org/wiki/CIECAM02>`_; and the perceptually
uniform CAM02-UCS / CAM02-LCD / CAM02-SCD spaces proposed by Luo et al
(2006).
To get started, simply write::
from colorspacious import cspace_convert
Jp, ap, bp = cspace_convert([64, 128, 255], "sRGB255", "CAM02-UCS")
This converts an sRGB value (represented as integers between 0-255) to
CAM02-UCS `J'a'b'` coordinates (assuming standard sRGB viewing
conditions by default). This requires passing through 4 intermediate
colorspaces; ``cspace_convert`` automatically finds the optimal route
and applies all conversions in sequence:
This function also of course accepts arbitrary NumPy arrays, so
converting a whole image is just as easy as converting a single value.
Documentation:
http://colorspacious.readthedocs.org/
Installation:
``pip install colorspacious``
Downloads:
https://pypi.python.org/pypi/colorspacious/
Code and bug tracker:
https://github.com/njsmith/colorspacious
Contact:
Nathaniel J. Smith <njs@pobox.com>
Dependencies:
* Python 2.6+, or 3.3+
* NumPy
Developer dependencies (only needed for hacking on source):
* nose: needed to run tests
License:
MIT, see LICENSE.txt for details.
References for algorithms we implement:
* Luo, M. R., Cui, G., & Li, C. (2006). Uniform colour spaces based on
CIECAM02 colour appearance model. Color Research & Application, 31(4),
320–330. doi:10.1002/col.20227
* Machado, G. M., Oliveira, M. M., & Fernandes, L. A. (2009). A
physiologically-based model for simulation of color vision
deficiency. Visualization and Computer Graphics, IEEE Transactions on,
15(6), 1291–1298. http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html
Other Python packages with similar functionality that you might want
to check out as well or instead:
* ``colour``: http://colour-science.org/
* ``colormath``: http://python-colormath.readthedocs.org/
* ``ciecam02``: https://pypi.python.org/pypi/ciecam02/
* ``ColorPy``: http://markkness.net/colorpy/ColorPy.html
Raw data
{
"_id": null,
"home_page": "https://github.com/njsmith/colorspacious",
"name": "colorspacious",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Nathaniel J. Smith",
"author_email": "njs@pobox.com",
"download_url": "https://files.pythonhosted.org/packages/75/e4/aa41ae14c5c061205715006c8834496d86ec7500f1edda5981f0f0190cc6/colorspacious-1.1.2.tar.gz",
"platform": "",
"description": "colorspacious\n=============\n\n.. image:: https://travis-ci.org/njsmith/colorspacious.svg?branch=master\n :target: https://travis-ci.org/njsmith/colorspacious\n :alt: Automated test status\n\n.. image:: https://codecov.io/gh/njsmith/colorspacious/branch/master/graph/badge.svg\n :target: https://codecov.io/gh/njsmith/colorspacious\n :alt: Test coverage\n\n.. image:: https://readthedocs.org/projects/colorspacious/badge/?version=latest\n :target: http://colorspacious.readthedocs.io/en/latest/?badge=latest\n :alt: Documentation Status\n\n.. image:: https://zenodo.org/badge/38525000.svg\n :target: https://zenodo.org/badge/latestdoi/38525000\n\nColorspacious is a powerful, accurate, and easy-to-use library for\nperforming colorspace conversions.\n\nIn addition to the most common standard colorspaces (sRGB, XYZ, xyY,\nCIELab, CIELCh), we also include: color vision deficiency (\"color\nblindness\") simulations using the approach of Machado et al (2009); a\ncomplete implementation of `CIECAM02\n<https://en.wikipedia.org/wiki/CIECAM02>`_; and the perceptually\nuniform CAM02-UCS / CAM02-LCD / CAM02-SCD spaces proposed by Luo et al\n(2006).\n\nTo get started, simply write::\n\n from colorspacious import cspace_convert\n\n Jp, ap, bp = cspace_convert([64, 128, 255], \"sRGB255\", \"CAM02-UCS\")\n\nThis converts an sRGB value (represented as integers between 0-255) to\nCAM02-UCS `J'a'b'` coordinates (assuming standard sRGB viewing\nconditions by default). This requires passing through 4 intermediate\ncolorspaces; ``cspace_convert`` automatically finds the optimal route\nand applies all conversions in sequence:\n\nThis function also of course accepts arbitrary NumPy arrays, so\nconverting a whole image is just as easy as converting a single value.\n\nDocumentation:\n http://colorspacious.readthedocs.org/\n\nInstallation:\n ``pip install colorspacious``\n\nDownloads:\n https://pypi.python.org/pypi/colorspacious/\n\nCode and bug tracker:\n https://github.com/njsmith/colorspacious\n\nContact:\n Nathaniel J. Smith <njs@pobox.com>\n\nDependencies:\n * Python 2.6+, or 3.3+\n * NumPy\n\nDeveloper dependencies (only needed for hacking on source):\n * nose: needed to run tests\n\nLicense:\n MIT, see LICENSE.txt for details.\n\nReferences for algorithms we implement:\n * Luo, M. R., Cui, G., & Li, C. (2006). Uniform colour spaces based on\n CIECAM02 colour appearance model. Color Research & Application, 31(4),\n 320\u2013330. doi:10.1002/col.20227\n * Machado, G. M., Oliveira, M. M., & Fernandes, L. A. (2009). A\n physiologically-based model for simulation of color vision\n deficiency. Visualization and Computer Graphics, IEEE Transactions on,\n 15(6), 1291\u20131298. http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html\n\nOther Python packages with similar functionality that you might want\nto check out as well or instead:\n\n* ``colour``: http://colour-science.org/\n* ``colormath``: http://python-colormath.readthedocs.org/\n* ``ciecam02``: https://pypi.python.org/pypi/ciecam02/\n* ``ColorPy``: http://markkness.net/colorpy/ColorPy.html\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A powerful, accurate, and easy-to-use Python library for doing colorspace conversions",
"version": "1.1.2",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "950cb853f03016cc311fa5f5d4e7447a",
"sha256": "c78befa603cea5dccb332464e7dd29e96469eebf6cd5133029153d1e69e3fd6f"
},
"downloads": -1,
"filename": "colorspacious-1.1.2-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "950cb853f03016cc311fa5f5d4e7447a",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 37735,
"upload_time": "2018-04-08T04:27:22",
"upload_time_iso_8601": "2018-04-08T04:27:22.143204Z",
"url": "https://files.pythonhosted.org/packages/ab/a1/318b9aeca7b9856410ededa4f52d6f82174d1a41e64bdd70d951e532675a/colorspacious-1.1.2-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "2f457686bd0afb8b0816b68cd903b8f9",
"sha256": "5e9072e8cdca889dac445c35c9362a22ccf758e97b00b79ff0d5a7ba3e11b618"
},
"downloads": -1,
"filename": "colorspacious-1.1.2.tar.gz",
"has_sig": false,
"md5_digest": "2f457686bd0afb8b0816b68cd903b8f9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 688573,
"upload_time": "2018-04-08T04:27:30",
"upload_time_iso_8601": "2018-04-08T04:27:30.830546Z",
"url": "https://files.pythonhosted.org/packages/75/e4/aa41ae14c5c061205715006c8834496d86ec7500f1edda5981f0f0190cc6/colorspacious-1.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2018-04-08 04:27:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "njsmith",
"github_project": "colorspacious",
"travis_ci": true,
"coveralls": true,
"github_actions": false,
"lcname": "colorspacious"
}