# Dataset Converters
This repository contains converters from different datasets to CommonRoad scenarios using a common commandline interface.
Currently, we support:
- [highD](https://www.highd-dataset.com/),
- [inD](https://www.ind-dataset.com/),
- [INTERACTION](http://interaction-dataset.com/),
- [exiD](https://www.exid-dataset.com/),
- [rounD](https://www.round-dataset.com/),
- [MONA](https://commonroad.in.tum.de/datasets),
- [SIND](https://github.com/SOTIF-AVLab/SinD).
## Install
```bash
pip install commonroad-dataset-converter
```
### Install with support for nuplan dataset
```bash
pip install commonroad-dataset-converter[nuplan]
```
## Development setup
This project uses [poetry](https://python-poetry.org/). Please follow the instructions to create the virtual development environment.
## Usage
Type following command for help
```bash
$ crconvert --help
Usage: crconvert [OPTIONS] INPUT_DIR OUTPUT_DIR COMMAND [ARGS]...
Generates CommonRoad scenarios from different datasets
Arguments:
INPUT_DIR Path to the data folder [required]
OUTPUT_DIR Directory to store generated CommonRoad files [required]
Options:
--num-time-steps INTEGER Maximum number of time steps in the
CommonRoad scenario [default: 150]
--num-planning-problems INTEGER
Number of planning problems per CommonRoad
scenario. More than one creates a
cooperative scenario. [default: 1]
--keep-ego / --no-keep-ego Vehicles used for planning problem should be
kept in the scenario. [default: no-keep-
ego]
--obstacles-start-at-zero / --no-obstacles-start-at-zero
The lowest time step in the scenario is set
to zero. [default: no-obstacles-start-at-
zero]
--downsample INTEGER Decrease dt by n*dt [default: 1]
--num-processes INTEGER Number of processes to convert dataset.
[default: 1]
--all-vehicles / --no-all-vehicles
Create one planning problem/scenario for
each valid vehicle. Invalidates num-time-
steps. [default: no-all-vehicles]
--routability-check [nocheck|strict]
Check routability of planning_problem
[default: RoutabilityCheck.Strict]
--output-type [xml|pb] File type of CommonRoad scenarios [default:
xml]
--max-scenarios INTEGER Only create up to n scenarios.
--samples-per-recording INTEGER
Randomly sample n scenarios from each
recording.
--help Show this message and exit.
Commands:
exid Convert the exiD dataset into CommonRoad scenario(s).
highd Convert the highD dataset into CommonRoad scenario(s).
ind Convert the inD dataset into CommonRoad scenario(s).
interaction Convert the INTERACTION dataset into CommonRoad scenario(s).
mona Convert the MONA dataset into CommonRoad scenario(s).
round Convert the rounD dataset into CommonRoad scenario(s).
sind Convert the SIND into CommonRoad scenario(s).
```
## Docker
The dataset converter can also be used within a docker container. We provide a [Dockerfile](./Dockerfile) to build the image.
```bash
docker build -t commonroad-dataset-converter .
```
The image's entrypoint calls `crconvert`. Any arguments passed to `docker run` are passed to the executable. To access the original dataset and converted scenarios, provide it as a volume mount `-v PATH_TO_DATASET:/data:ro` and `-v PATH_TO_OUTPUT_DIRECTORY:/output`
Example: Convert the highD dataset
```bash
docker run -v `pwd`/highd_dataset:/data:ro -v `pwd`/highd_scenarios:/output commonroad-dataset-converter \
--max-scenarios 20 --samples-per-recording 20 /data /output highd
```
Raw data
{
"_id": null,
"home_page": "https://commonroad.in.tum.de",
"name": "commonroad-dataset-converter",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8,<3.11",
"maintainer_email": "",
"keywords": "",
"author": "Cyber-Physical Systems Group, Technical University of Munich",
"author_email": "commonroad@lists.lrz.de",
"download_url": "https://files.pythonhosted.org/packages/51/39/8b88265b738b0a2619d52ed1df9cdec096e79bb07174185a390335e0fb6a/commonroad_dataset_converter-2023.2.tar.gz",
"platform": null,
"description": "# Dataset Converters\n\nThis repository contains converters from different datasets to CommonRoad scenarios using a common commandline interface.\nCurrently, we support:\n\n- [highD](https://www.highd-dataset.com/),\n- [inD](https://www.ind-dataset.com/),\n- [INTERACTION](http://interaction-dataset.com/),\n- [exiD](https://www.exid-dataset.com/),\n- [rounD](https://www.round-dataset.com/),\n- [MONA](https://commonroad.in.tum.de/datasets),\n- [SIND](https://github.com/SOTIF-AVLab/SinD).\n\n## Install\n\n```bash\npip install commonroad-dataset-converter\n```\n\n### Install with support for nuplan dataset\n\n```bash\npip install commonroad-dataset-converter[nuplan]\n```\n\n## Development setup\n\nThis project uses [poetry](https://python-poetry.org/). Please follow the instructions to create the virtual development environment.\n\n## Usage\n\nType following command for help\n\n```bash\n$ crconvert --help\nUsage: crconvert [OPTIONS] INPUT_DIR OUTPUT_DIR COMMAND [ARGS]...\n\n Generates CommonRoad scenarios from different datasets\n\nArguments:\n INPUT_DIR Path to the data folder [required]\n OUTPUT_DIR Directory to store generated CommonRoad files [required]\n\nOptions:\n --num-time-steps INTEGER Maximum number of time steps in the\n CommonRoad scenario [default: 150]\n --num-planning-problems INTEGER\n Number of planning problems per CommonRoad\n scenario. More than one creates a\n cooperative scenario. [default: 1]\n --keep-ego / --no-keep-ego Vehicles used for planning problem should be\n kept in the scenario. [default: no-keep-\n ego]\n --obstacles-start-at-zero / --no-obstacles-start-at-zero\n The lowest time step in the scenario is set\n to zero. [default: no-obstacles-start-at-\n zero]\n --downsample INTEGER Decrease dt by n*dt [default: 1]\n --num-processes INTEGER Number of processes to convert dataset.\n [default: 1]\n --all-vehicles / --no-all-vehicles\n Create one planning problem/scenario for\n each valid vehicle. Invalidates num-time-\n steps. [default: no-all-vehicles]\n --routability-check [nocheck|strict]\n Check routability of planning_problem\n [default: RoutabilityCheck.Strict]\n --output-type [xml|pb] File type of CommonRoad scenarios [default:\n xml]\n --max-scenarios INTEGER Only create up to n scenarios.\n --samples-per-recording INTEGER\n Randomly sample n scenarios from each\n recording.\n --help Show this message and exit.\n\nCommands:\n exid Convert the exiD dataset into CommonRoad scenario(s).\n highd Convert the highD dataset into CommonRoad scenario(s).\n ind Convert the inD dataset into CommonRoad scenario(s).\n interaction Convert the INTERACTION dataset into CommonRoad scenario(s).\n mona Convert the MONA dataset into CommonRoad scenario(s).\n round Convert the rounD dataset into CommonRoad scenario(s).\n sind Convert the SIND into CommonRoad scenario(s).\n\n```\n\n## Docker\n\nThe dataset converter can also be used within a docker container. We provide a [Dockerfile](./Dockerfile) to build the image.\n\n```bash\ndocker build -t commonroad-dataset-converter .\n```\n\nThe image's entrypoint calls `crconvert`. Any arguments passed to `docker run` are passed to the executable. To access the original dataset and converted scenarios, provide it as a volume mount `-v PATH_TO_DATASET:/data:ro` and `-v PATH_TO_OUTPUT_DIRECTORY:/output`\n\nExample: Convert the highD dataset\n\n```bash\ndocker run -v `pwd`/highd_dataset:/data:ro -v `pwd`/highd_scenarios:/output commonroad-dataset-converter \\\n --max-scenarios 20 --samples-per-recording 20 /data /output highd\n```\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "CommonRoad Dataset Converter",
"version": "2023.2",
"project_urls": {
"Homepage": "https://commonroad.in.tum.de"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "52046772f7deb66f3f54ad32418800101f0ccbaadd5a38364a6a02d5f493a738",
"md5": "d555af10731b2e9380daff15bcc668a3",
"sha256": "a5d22f2f089f71d7ead6c49f35314359344f9b499a65aa8611aa3f7a5a46da50"
},
"downloads": -1,
"filename": "commonroad_dataset_converter-2023.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d555af10731b2e9380daff15bcc668a3",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8,<3.11",
"size": 767723,
"upload_time": "2023-11-03T14:51:31",
"upload_time_iso_8601": "2023-11-03T14:51:31.061478Z",
"url": "https://files.pythonhosted.org/packages/52/04/6772f7deb66f3f54ad32418800101f0ccbaadd5a38364a6a02d5f493a738/commonroad_dataset_converter-2023.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "51398b88265b738b0a2619d52ed1df9cdec096e79bb07174185a390335e0fb6a",
"md5": "f1e87253daea27c5ce122e0aeb5aa6aa",
"sha256": "2e1f40c12688cf245db3f1588ff15bddfea4cf7ca8c21ecf04ffc51d07b8fc39"
},
"downloads": -1,
"filename": "commonroad_dataset_converter-2023.2.tar.gz",
"has_sig": false,
"md5_digest": "f1e87253daea27c5ce122e0aeb5aa6aa",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8,<3.11",
"size": 698855,
"upload_time": "2023-11-03T14:51:34",
"upload_time_iso_8601": "2023-11-03T14:51:34.782150Z",
"url": "https://files.pythonhosted.org/packages/51/39/8b88265b738b0a2619d52ed1df9cdec096e79bb07174185a390335e0fb6a/commonroad_dataset_converter-2023.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-03 14:51:34",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "commonroad-dataset-converter"
}