compas-libigl


Namecompas-libigl JSON
Version 0.3.1 PyPI version JSON
download
home_pagehttps://github.com/BlockResearchGroup/compas_libigl
SummaryOpinionated COMPAS compatible bindings for top-level algorithms of libigl.
upload_time2023-12-05 21:35:06
maintainer
docs_urlNone
authorTom Van Mele
requires_python>=3.7,<3.11
licenseMIT license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # compas_libigl

COMPAS-compatible bindings for top-level algorithms of libigl generated with Pybind.
Many of the functions provided by `compas_libigl` are based on the examples in the libigl tutorial.

## Installation

`compas_libigl` can be installed using a combination of conda and pip.

```bash
conda create -n igl python=3.7 git cmake">=3.14" boost eigen=3.3 COMPAS compas_view2 --yes
conda activate igl
git clone --recursive https://github.com/BlockResearchGroup/compas_libigl.git
cd compas_libigl
rm -rf build
pip install -e .
```

> If you have git/cmake installed, this can be omitted from the environment installation.
> On Mac, don't forget to install `python.app`!

## Libigl functions

Currently the following functionalities of Libigl are included in the wrapper

* Geodesic distance calculation
* Scalarfield isolines
* Quad mesh planarization
* Mass matrix of triangle meshes
* Discrete gaussian curvature
* Ray/mesh intersection
* Boundary loops
* Harmonic parametrisation
* Least-squares conformal maps

## Examples

The use of the wrapped functions is illustrated with scripts in the `examples` folder.
Note that the functionality of the package is not directly available in Rhino, but can be used through `compas.rpc`.

## License

Libigl (and therefore also `compas_libigl`) is licensed under MPL-2.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/BlockResearchGroup/compas_libigl",
    "name": "compas-libigl",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7,<3.11",
    "maintainer_email": "",
    "keywords": "",
    "author": "Tom Van Mele",
    "author_email": "van.mele@arch.ethz.ch",
    "download_url": "https://files.pythonhosted.org/packages/dd/23/adbde9ccfaced99e915582a5e8844a517e631f95ad3194f4e2b1dd082c5e/compas_libigl-0.3.1.tar.gz",
    "platform": null,
    "description": "# compas_libigl\n\nCOMPAS-compatible bindings for top-level algorithms of libigl generated with Pybind.\nMany of the functions provided by `compas_libigl` are based on the examples in the libigl tutorial.\n\n## Installation\n\n`compas_libigl` can be installed using a combination of conda and pip.\n\n```bash\nconda create -n igl python=3.7 git cmake\">=3.14\" boost eigen=3.3 COMPAS compas_view2 --yes\nconda activate igl\ngit clone --recursive https://github.com/BlockResearchGroup/compas_libigl.git\ncd compas_libigl\nrm -rf build\npip install -e .\n```\n\n> If you have git/cmake installed, this can be omitted from the environment installation.\n> On Mac, don't forget to install `python.app`!\n\n## Libigl functions\n\nCurrently the following functionalities of Libigl are included in the wrapper\n\n* Geodesic distance calculation\n* Scalarfield isolines\n* Quad mesh planarization\n* Mass matrix of triangle meshes\n* Discrete gaussian curvature\n* Ray/mesh intersection\n* Boundary loops\n* Harmonic parametrisation\n* Least-squares conformal maps\n\n## Examples\n\nThe use of the wrapped functions is illustrated with scripts in the `examples` folder.\nNote that the functionality of the package is not directly available in Rhino, but can be used through `compas.rpc`.\n\n## License\n\nLibigl (and therefore also `compas_libigl`) is licensed under MPL-2.\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "Opinionated COMPAS compatible bindings for top-level algorithms of libigl.",
    "version": "0.3.1",
    "project_urls": {
        "Homepage": "https://github.com/BlockResearchGroup/compas_libigl"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dd23adbde9ccfaced99e915582a5e8844a517e631f95ad3194f4e2b1dd082c5e",
                "md5": "d3d0835bb9957b41956b1b45f2c2f02f",
                "sha256": "00fded22724e5544ff4c9194c8d1d1e1607c5ba0cb734bb57e83435056758da7"
            },
            "downloads": -1,
            "filename": "compas_libigl-0.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "d3d0835bb9957b41956b1b45f2c2f02f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7,<3.11",
            "size": 19533,
            "upload_time": "2023-12-05T21:35:06",
            "upload_time_iso_8601": "2023-12-05T21:35:06.704647Z",
            "url": "https://files.pythonhosted.org/packages/dd/23/adbde9ccfaced99e915582a5e8844a517e631f95ad3194f4e2b1dd082c5e/compas_libigl-0.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-05 21:35:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "BlockResearchGroup",
    "github_project": "compas_libigl",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "compas-libigl"
}
        
Elapsed time: 0.25344s