# Canine Olfactory Optimizer (COO)
"""
# Canine Olfactory Optimization (COO)
A nature-inspired metaheuristic optimization algorithm based on the olfactory tracking behavior of canines.
## Features
- Bio-inspired algorithm based on canine pack hunting
- Surrogate-assisted optimization for expensive functions
- Multi-pack architecture for diverse exploration
- Adaptive population sizing
- Easy-to-use API
## Installation
```bash
pip install coo-optimizer
```
## Quick Start
```python
from coo_optimizer import CanineOlfactoryOptimization
import numpy as np
# Define your objective function (to maximize)
def sphere(x):
return -np.sum(x**2)
# Set bounds
bounds = [(-5, 5)] * 10 # 10-dimensional problem
# Create optimizer
coo = CanineOlfactoryOptimization(
bounds=bounds,
n_packs=2,
init_pack_size=10,
max_iterations=100,
random_state=42
)
# Optimize
best_position, best_fitness, history, diagnostics = coo.optimize(sphere)
print(f"Best fitness: {best_fitness}")
print(f"Best position: {best_position}")
```
## Testing
Run tests with pytest:
```bash
pytest tests/ -v --cov=coo_optimizer
```
## License
MIT License
"""
Raw data
{
"_id": null,
"home_page": "https://github.com/SandipGarai/coo_algorithm",
"name": "coo-algorithm",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "optimization, metaheuristic, machine-learning",
"author": "Sandip Garai",
"author_email": "Sandip Garai <sandipnicksandy@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/50/dd/95c0e2f7c948661f78f0767f7f8f63cabba3d921ee20ca36618d51c46721/coo_algorithm-1.1.0.tar.gz",
"platform": null,
"description": "# Canine Olfactory Optimizer (COO)\r\n\r\n\"\"\"\r\n\r\n# Canine Olfactory Optimization (COO)\r\n\r\nA nature-inspired metaheuristic optimization algorithm based on the olfactory tracking behavior of canines.\r\n\r\n## Features\r\n\r\n- Bio-inspired algorithm based on canine pack hunting\r\n- Surrogate-assisted optimization for expensive functions\r\n- Multi-pack architecture for diverse exploration\r\n- Adaptive population sizing\r\n- Easy-to-use API\r\n\r\n## Installation\r\n\r\n```bash\r\npip install coo-optimizer\r\n```\r\n\r\n## Quick Start\r\n\r\n```python\r\nfrom coo_optimizer import CanineOlfactoryOptimization\r\nimport numpy as np\r\n\r\n# Define your objective function (to maximize)\r\ndef sphere(x):\r\n return -np.sum(x**2)\r\n\r\n# Set bounds\r\nbounds = [(-5, 5)] * 10 # 10-dimensional problem\r\n\r\n# Create optimizer\r\ncoo = CanineOlfactoryOptimization(\r\n bounds=bounds,\r\n n_packs=2,\r\n init_pack_size=10,\r\n max_iterations=100,\r\n random_state=42\r\n)\r\n\r\n# Optimize\r\nbest_position, best_fitness, history, diagnostics = coo.optimize(sphere)\r\n\r\nprint(f\"Best fitness: {best_fitness}\")\r\nprint(f\"Best position: {best_position}\")\r\n```\r\n\r\n## Testing\r\n\r\nRun tests with pytest:\r\n\r\n```bash\r\npytest tests/ -v --cov=coo_optimizer\r\n```\r\n\r\n## License\r\n\r\nMIT License\r\n\"\"\"\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Canine Olfactory Optimization Algorithm",
"version": "1.1.0",
"project_urls": {
"Documentation": "https://github.com/SandipGarai/coo_algorithm/blob/main/README.md",
"Homepage": "https://SandipGarai.github.io/coo_algorithm",
"Repository": "https://github.com/SandipGarai/coo_algorithm/tree/main"
},
"split_keywords": [
"optimization",
" metaheuristic",
" machine-learning"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "d0f290ee148413a1df2d522f77534a62ebf991b70e578e8a7f2e95ae873deb7e",
"md5": "562fbc3f46a6d69ab817b7cd2a060825",
"sha256": "c6983dc71e0054e78e569c9150cc4a8c083961244308363607a791ad13dba38c"
},
"downloads": -1,
"filename": "coo_algorithm-1.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "562fbc3f46a6d69ab817b7cd2a060825",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 25074,
"upload_time": "2025-10-29T07:10:17",
"upload_time_iso_8601": "2025-10-29T07:10:17.759064Z",
"url": "https://files.pythonhosted.org/packages/d0/f2/90ee148413a1df2d522f77534a62ebf991b70e578e8a7f2e95ae873deb7e/coo_algorithm-1.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "50dd95c0e2f7c948661f78f0767f7f8f63cabba3d921ee20ca36618d51c46721",
"md5": "8cb3e6bdfffd78a3d5a7de377ba942ea",
"sha256": "9944d061b825490f249b12a47b6dd8fba78fd268c2afe321bcf2f4bb11f7f9e2"
},
"downloads": -1,
"filename": "coo_algorithm-1.1.0.tar.gz",
"has_sig": false,
"md5_digest": "8cb3e6bdfffd78a3d5a7de377ba942ea",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 24966,
"upload_time": "2025-10-29T07:10:19",
"upload_time_iso_8601": "2025-10-29T07:10:19.671744Z",
"url": "https://files.pythonhosted.org/packages/50/dd/95c0e2f7c948661f78f0767f7f8f63cabba3d921ee20ca36618d51c46721/coo_algorithm-1.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-29 07:10:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "SandipGarai",
"github_project": "coo_algorithm",
"github_not_found": true,
"lcname": "coo-algorithm"
}