coo-algorithm


Namecoo-algorithm JSON
Version 1.1.0 PyPI version JSON
download
home_pagehttps://github.com/SandipGarai/coo_algorithm
SummaryCanine Olfactory Optimization Algorithm
upload_time2025-10-29 07:10:19
maintainerNone
docs_urlNone
authorSandip Garai
requires_python>=3.7
licenseMIT
keywords optimization metaheuristic machine-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Canine Olfactory Optimizer (COO)

"""

# Canine Olfactory Optimization (COO)

A nature-inspired metaheuristic optimization algorithm based on the olfactory tracking behavior of canines.

## Features

- Bio-inspired algorithm based on canine pack hunting
- Surrogate-assisted optimization for expensive functions
- Multi-pack architecture for diverse exploration
- Adaptive population sizing
- Easy-to-use API

## Installation

```bash
pip install coo-optimizer
```

## Quick Start

```python
from coo_optimizer import CanineOlfactoryOptimization
import numpy as np

# Define your objective function (to maximize)
def sphere(x):
    return -np.sum(x**2)

# Set bounds
bounds = [(-5, 5)] * 10  # 10-dimensional problem

# Create optimizer
coo = CanineOlfactoryOptimization(
    bounds=bounds,
    n_packs=2,
    init_pack_size=10,
    max_iterations=100,
    random_state=42
)

# Optimize
best_position, best_fitness, history, diagnostics = coo.optimize(sphere)

print(f"Best fitness: {best_fitness}")
print(f"Best position: {best_position}")
```

## Testing

Run tests with pytest:

```bash
pytest tests/ -v --cov=coo_optimizer
```

## License

MIT License
"""

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/SandipGarai/coo_algorithm",
    "name": "coo-algorithm",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "optimization, metaheuristic, machine-learning",
    "author": "Sandip Garai",
    "author_email": "Sandip Garai <sandipnicksandy@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/50/dd/95c0e2f7c948661f78f0767f7f8f63cabba3d921ee20ca36618d51c46721/coo_algorithm-1.1.0.tar.gz",
    "platform": null,
    "description": "# Canine Olfactory Optimizer (COO)\r\n\r\n\"\"\"\r\n\r\n# Canine Olfactory Optimization (COO)\r\n\r\nA nature-inspired metaheuristic optimization algorithm based on the olfactory tracking behavior of canines.\r\n\r\n## Features\r\n\r\n- Bio-inspired algorithm based on canine pack hunting\r\n- Surrogate-assisted optimization for expensive functions\r\n- Multi-pack architecture for diverse exploration\r\n- Adaptive population sizing\r\n- Easy-to-use API\r\n\r\n## Installation\r\n\r\n```bash\r\npip install coo-optimizer\r\n```\r\n\r\n## Quick Start\r\n\r\n```python\r\nfrom coo_optimizer import CanineOlfactoryOptimization\r\nimport numpy as np\r\n\r\n# Define your objective function (to maximize)\r\ndef sphere(x):\r\n    return -np.sum(x**2)\r\n\r\n# Set bounds\r\nbounds = [(-5, 5)] * 10  # 10-dimensional problem\r\n\r\n# Create optimizer\r\ncoo = CanineOlfactoryOptimization(\r\n    bounds=bounds,\r\n    n_packs=2,\r\n    init_pack_size=10,\r\n    max_iterations=100,\r\n    random_state=42\r\n)\r\n\r\n# Optimize\r\nbest_position, best_fitness, history, diagnostics = coo.optimize(sphere)\r\n\r\nprint(f\"Best fitness: {best_fitness}\")\r\nprint(f\"Best position: {best_position}\")\r\n```\r\n\r\n## Testing\r\n\r\nRun tests with pytest:\r\n\r\n```bash\r\npytest tests/ -v --cov=coo_optimizer\r\n```\r\n\r\n## License\r\n\r\nMIT License\r\n\"\"\"\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Canine Olfactory Optimization Algorithm",
    "version": "1.1.0",
    "project_urls": {
        "Documentation": "https://github.com/SandipGarai/coo_algorithm/blob/main/README.md",
        "Homepage": "https://SandipGarai.github.io/coo_algorithm",
        "Repository": "https://github.com/SandipGarai/coo_algorithm/tree/main"
    },
    "split_keywords": [
        "optimization",
        " metaheuristic",
        " machine-learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d0f290ee148413a1df2d522f77534a62ebf991b70e578e8a7f2e95ae873deb7e",
                "md5": "562fbc3f46a6d69ab817b7cd2a060825",
                "sha256": "c6983dc71e0054e78e569c9150cc4a8c083961244308363607a791ad13dba38c"
            },
            "downloads": -1,
            "filename": "coo_algorithm-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "562fbc3f46a6d69ab817b7cd2a060825",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 25074,
            "upload_time": "2025-10-29T07:10:17",
            "upload_time_iso_8601": "2025-10-29T07:10:17.759064Z",
            "url": "https://files.pythonhosted.org/packages/d0/f2/90ee148413a1df2d522f77534a62ebf991b70e578e8a7f2e95ae873deb7e/coo_algorithm-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "50dd95c0e2f7c948661f78f0767f7f8f63cabba3d921ee20ca36618d51c46721",
                "md5": "8cb3e6bdfffd78a3d5a7de377ba942ea",
                "sha256": "9944d061b825490f249b12a47b6dd8fba78fd268c2afe321bcf2f4bb11f7f9e2"
            },
            "downloads": -1,
            "filename": "coo_algorithm-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "8cb3e6bdfffd78a3d5a7de377ba942ea",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 24966,
            "upload_time": "2025-10-29T07:10:19",
            "upload_time_iso_8601": "2025-10-29T07:10:19.671744Z",
            "url": "https://files.pythonhosted.org/packages/50/dd/95c0e2f7c948661f78f0767f7f8f63cabba3d921ee20ca36618d51c46721/coo_algorithm-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-29 07:10:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "SandipGarai",
    "github_project": "coo_algorithm",
    "github_not_found": true,
    "lcname": "coo-algorithm"
}
        
Elapsed time: 1.20060s