copairs


Namecopairs JSON
Version 0.4.2 PyPI version JSON
download
home_pageNone
SummaryFind pairs and compute metrics between them
upload_time2024-10-22 15:41:34
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords pairwise replication
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
             # copairs

`copairs` is a Python package for finding groups of profiles based on metadata and calculate mean Average Precision to assess intra- vs inter-group similarities.

## Getting started

### System requirements
copairs supports Python 3.8+ and should work with all modern operating systems (tested with MacOS 13.5, Ubuntu 18.04, Windows 10).

### Dependencies
copairs depends on widely used Python packages:
* numpy
* pandas
* tqdm
* statsmodels
* [optional] plotly

### Installation

To install copairs and dependencies, run:
```bash
pip install copairs
```

To also install dependencies for running examples, run:
```bash
pip install copairs[demo]
```

### Testing

To run tests, run:
```bash
pip install -e .[test]
pytest
```

## Usage

We provide examples demonstrating how to use copairs for:
- [grouping profiles based on their metadata](./examples/finding_pairs.ipynb)
- [calculating mAP to assess phenotypic activity and consistnecy of perturbation using real data](./examples/mAP_demo.ipynb)


## Citation
If you find this work useful for your research, please cite our [pre-print](https://doi.org/10.1101/2024.04.01.587631):

Kalinin, A.A., Arevalo, J., Vulliard, L., Serrano, E., Tsang, H., Bornholdt, M., Rajwa, B., Carpenter, A.E., Way, G.P. and Singh, S., 2024. A versatile information retrieval framework for evaluating profile strength and similarity. bioRxiv, pp.2024-04. doi:10.1101/2024.04.01.587631

BibTeX:
```
@article{kalinin2024versatile,
  title={A versatile information retrieval framework for evaluating profile strength and similarity},
  author={Kalinin, Alexandr A and Arevalo, John and Vulliard, Loan and Serrano, Erik and Tsang, Hillary and Bornholdt, Michael and Rajwa, Bartek and Carpenter, Anne E and Way, Gregory P and Singh, Shantanu},
  journal={bioRxiv},
  pages={2024--04},
  year={2024},
  doi={10.1101/2024.04.01.587631}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "copairs",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "pairwise, replication",
    "author": null,
    "author_email": "John Arevalo <johnarevalo@gmail.com>, Alexandr Kalinin <akalinin@broadinstitute.org>",
    "download_url": "https://files.pythonhosted.org/packages/fe/77/a7514fb3186301cc288b419b0afc731ef2f7104c9b238539626ceeb06507/copairs-0.4.2.tar.gz",
    "platform": null,
    "description": " # copairs\n\n`copairs` is a Python package for finding groups of profiles based on metadata and calculate mean Average Precision to assess intra- vs inter-group similarities.\n\n## Getting started\n\n### System requirements\ncopairs supports Python 3.8+ and should work with all modern operating systems (tested with MacOS 13.5, Ubuntu 18.04, Windows 10).\n\n### Dependencies\ncopairs depends on widely used Python packages:\n* numpy\n* pandas\n* tqdm\n* statsmodels\n* [optional] plotly\n\n### Installation\n\nTo install copairs and dependencies, run:\n```bash\npip install copairs\n```\n\nTo also install dependencies for running examples, run:\n```bash\npip install copairs[demo]\n```\n\n### Testing\n\nTo run tests, run:\n```bash\npip install -e .[test]\npytest\n```\n\n## Usage\n\nWe provide examples demonstrating how to use copairs for:\n- [grouping profiles based on their metadata](./examples/finding_pairs.ipynb)\n- [calculating mAP to assess phenotypic activity and consistnecy of perturbation using real data](./examples/mAP_demo.ipynb)\n\n\n## Citation\nIf you find this work useful for your research, please cite our [pre-print](https://doi.org/10.1101/2024.04.01.587631):\n\nKalinin, A.A., Arevalo, J., Vulliard, L., Serrano, E., Tsang, H., Bornholdt, M., Rajwa, B., Carpenter, A.E., Way, G.P. and Singh, S., 2024. A versatile information retrieval framework for evaluating profile strength and similarity. bioRxiv, pp.2024-04. doi:10.1101/2024.04.01.587631\n\nBibTeX:\n```\n@article{kalinin2024versatile,\n  title={A versatile information retrieval framework for evaluating profile strength and similarity},\n  author={Kalinin, Alexandr A and Arevalo, John and Vulliard, Loan and Serrano, Erik and Tsang, Hillary and Bornholdt, Michael and Rajwa, Bartek and Carpenter, Anne E and Way, Gregory P and Singh, Shantanu},\n  journal={bioRxiv},\n  pages={2024--04},\n  year={2024},\n  doi={10.1101/2024.04.01.587631}\n}\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Find pairs and compute metrics between them",
    "version": "0.4.2",
    "project_urls": {
        "Bug Reports": "https://github.com/cytomining/copairs/issues",
        "Homepage": "https://github.com/cytomining/copairs",
        "Source": "https://github.com/cytomining/copairs/"
    },
    "split_keywords": [
        "pairwise",
        " replication"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3f04c9971e1a85b424232e015586b5e529501af34e0351bdae914c782cd53974",
                "md5": "b7d6b94a5d3e29475aa68f4b75ba8349",
                "sha256": "9cce7a3bfd60dcb232dd84d2bb878a560e72728cd53695830fa54b9785ac448e"
            },
            "downloads": -1,
            "filename": "copairs-0.4.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b7d6b94a5d3e29475aa68f4b75ba8349",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 18937,
            "upload_time": "2024-10-22T15:41:33",
            "upload_time_iso_8601": "2024-10-22T15:41:33.976012Z",
            "url": "https://files.pythonhosted.org/packages/3f/04/c9971e1a85b424232e015586b5e529501af34e0351bdae914c782cd53974/copairs-0.4.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fe77a7514fb3186301cc288b419b0afc731ef2f7104c9b238539626ceeb06507",
                "md5": "05d133b2d7dcb18596e45c9922874520",
                "sha256": "e9b0bb6be02a9826f5f0551353bffb1dfc6dac77b0785c0bd3ac4abc24f5d97d"
            },
            "downloads": -1,
            "filename": "copairs-0.4.2.tar.gz",
            "has_sig": false,
            "md5_digest": "05d133b2d7dcb18596e45c9922874520",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 21620,
            "upload_time": "2024-10-22T15:41:34",
            "upload_time_iso_8601": "2024-10-22T15:41:34.865967Z",
            "url": "https://files.pythonhosted.org/packages/fe/77/a7514fb3186301cc288b419b0afc731ef2f7104c9b238539626ceeb06507/copairs-0.4.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-22 15:41:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cytomining",
    "github_project": "copairs",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "copairs"
}
        
Elapsed time: 5.90525s