Name | copairs JSON |
Version |
0.4.2
JSON |
| download |
home_page | None |
Summary | Find pairs and compute metrics between them |
upload_time | 2024-10-22 15:41:34 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
pairwise
replication
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# copairs
`copairs` is a Python package for finding groups of profiles based on metadata and calculate mean Average Precision to assess intra- vs inter-group similarities.
## Getting started
### System requirements
copairs supports Python 3.8+ and should work with all modern operating systems (tested with MacOS 13.5, Ubuntu 18.04, Windows 10).
### Dependencies
copairs depends on widely used Python packages:
* numpy
* pandas
* tqdm
* statsmodels
* [optional] plotly
### Installation
To install copairs and dependencies, run:
```bash
pip install copairs
```
To also install dependencies for running examples, run:
```bash
pip install copairs[demo]
```
### Testing
To run tests, run:
```bash
pip install -e .[test]
pytest
```
## Usage
We provide examples demonstrating how to use copairs for:
- [grouping profiles based on their metadata](./examples/finding_pairs.ipynb)
- [calculating mAP to assess phenotypic activity and consistnecy of perturbation using real data](./examples/mAP_demo.ipynb)
## Citation
If you find this work useful for your research, please cite our [pre-print](https://doi.org/10.1101/2024.04.01.587631):
Kalinin, A.A., Arevalo, J., Vulliard, L., Serrano, E., Tsang, H., Bornholdt, M., Rajwa, B., Carpenter, A.E., Way, G.P. and Singh, S., 2024. A versatile information retrieval framework for evaluating profile strength and similarity. bioRxiv, pp.2024-04. doi:10.1101/2024.04.01.587631
BibTeX:
```
@article{kalinin2024versatile,
title={A versatile information retrieval framework for evaluating profile strength and similarity},
author={Kalinin, Alexandr A and Arevalo, John and Vulliard, Loan and Serrano, Erik and Tsang, Hillary and Bornholdt, Michael and Rajwa, Bartek and Carpenter, Anne E and Way, Gregory P and Singh, Shantanu},
journal={bioRxiv},
pages={2024--04},
year={2024},
doi={10.1101/2024.04.01.587631}
}
```
Raw data
{
"_id": null,
"home_page": null,
"name": "copairs",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "pairwise, replication",
"author": null,
"author_email": "John Arevalo <johnarevalo@gmail.com>, Alexandr Kalinin <akalinin@broadinstitute.org>",
"download_url": "https://files.pythonhosted.org/packages/fe/77/a7514fb3186301cc288b419b0afc731ef2f7104c9b238539626ceeb06507/copairs-0.4.2.tar.gz",
"platform": null,
"description": " # copairs\n\n`copairs` is a Python package for finding groups of profiles based on metadata and calculate mean Average Precision to assess intra- vs inter-group similarities.\n\n## Getting started\n\n### System requirements\ncopairs supports Python 3.8+ and should work with all modern operating systems (tested with MacOS 13.5, Ubuntu 18.04, Windows 10).\n\n### Dependencies\ncopairs depends on widely used Python packages:\n* numpy\n* pandas\n* tqdm\n* statsmodels\n* [optional] plotly\n\n### Installation\n\nTo install copairs and dependencies, run:\n```bash\npip install copairs\n```\n\nTo also install dependencies for running examples, run:\n```bash\npip install copairs[demo]\n```\n\n### Testing\n\nTo run tests, run:\n```bash\npip install -e .[test]\npytest\n```\n\n## Usage\n\nWe provide examples demonstrating how to use copairs for:\n- [grouping profiles based on their metadata](./examples/finding_pairs.ipynb)\n- [calculating mAP to assess phenotypic activity and consistnecy of perturbation using real data](./examples/mAP_demo.ipynb)\n\n\n## Citation\nIf you find this work useful for your research, please cite our [pre-print](https://doi.org/10.1101/2024.04.01.587631):\n\nKalinin, A.A., Arevalo, J., Vulliard, L., Serrano, E., Tsang, H., Bornholdt, M., Rajwa, B., Carpenter, A.E., Way, G.P. and Singh, S., 2024. A versatile information retrieval framework for evaluating profile strength and similarity. bioRxiv, pp.2024-04. doi:10.1101/2024.04.01.587631\n\nBibTeX:\n```\n@article{kalinin2024versatile,\n title={A versatile information retrieval framework for evaluating profile strength and similarity},\n author={Kalinin, Alexandr A and Arevalo, John and Vulliard, Loan and Serrano, Erik and Tsang, Hillary and Bornholdt, Michael and Rajwa, Bartek and Carpenter, Anne E and Way, Gregory P and Singh, Shantanu},\n journal={bioRxiv},\n pages={2024--04},\n year={2024},\n doi={10.1101/2024.04.01.587631}\n}\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "Find pairs and compute metrics between them",
"version": "0.4.2",
"project_urls": {
"Bug Reports": "https://github.com/cytomining/copairs/issues",
"Homepage": "https://github.com/cytomining/copairs",
"Source": "https://github.com/cytomining/copairs/"
},
"split_keywords": [
"pairwise",
" replication"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3f04c9971e1a85b424232e015586b5e529501af34e0351bdae914c782cd53974",
"md5": "b7d6b94a5d3e29475aa68f4b75ba8349",
"sha256": "9cce7a3bfd60dcb232dd84d2bb878a560e72728cd53695830fa54b9785ac448e"
},
"downloads": -1,
"filename": "copairs-0.4.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b7d6b94a5d3e29475aa68f4b75ba8349",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 18937,
"upload_time": "2024-10-22T15:41:33",
"upload_time_iso_8601": "2024-10-22T15:41:33.976012Z",
"url": "https://files.pythonhosted.org/packages/3f/04/c9971e1a85b424232e015586b5e529501af34e0351bdae914c782cd53974/copairs-0.4.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fe77a7514fb3186301cc288b419b0afc731ef2f7104c9b238539626ceeb06507",
"md5": "05d133b2d7dcb18596e45c9922874520",
"sha256": "e9b0bb6be02a9826f5f0551353bffb1dfc6dac77b0785c0bd3ac4abc24f5d97d"
},
"downloads": -1,
"filename": "copairs-0.4.2.tar.gz",
"has_sig": false,
"md5_digest": "05d133b2d7dcb18596e45c9922874520",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 21620,
"upload_time": "2024-10-22T15:41:34",
"upload_time_iso_8601": "2024-10-22T15:41:34.865967Z",
"url": "https://files.pythonhosted.org/packages/fe/77/a7514fb3186301cc288b419b0afc731ef2f7104c9b238539626ceeb06507/copairs-0.4.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-22 15:41:34",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "cytomining",
"github_project": "copairs",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "copairs"
}